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CHAPTER 1

Bayesian and frequentist approachs

Jourdain: There is this person of great quality and I want you to help me to write a short love note which I can drop at her feet.
Philosophy Master: Fine. Do you wish to write to her in verse?
Jourdain: No, no poetry.
Philosophy Master: So you desire prose.
Jourdain: Oh, no! I don’t want prose or poetry.
Philosophy Master: It must be one or the other.
Jourdain: Why?
Philosophy Master: Because there is no other way to express oneself but through prose or verse. Whatever is not prose, is
poetry and whatever is not poetry is prose.
Jourdain: When I talk what’s that then?
Philosophy Master: Prose.
Jourdain: When I say, Nicole! Bring me my slippers, is that prose.
Philosophy Master: Yes, sir.
Jourdain: So I have been speaking prose for years without even knowing it! What a Master you are.

Molière , The Bourgeois Gentleman

1.1 Introduction

It may sound surprising to start a book on Bayesian statistics with an extract from a play by Molière. Yet
we can draw a parallel between this dialog and the statistical approach discussed in this book. In this
extract, Mr. Jourdain (the main character of “The Bourgeois Gentleman”) first discovers that speaking
is formally known as “prose”. Moreover, he learns that there exist in fact two ways to express oneself:
prose, and poetry. The same goes for statistics. Most statisticians follow an approach formally known
as the “frequentist” approach, without being aware of it. In addition, there exist in fact two different
approaches to statistics: the frequentist approach, and the Bayesian approach1.

This first chapter introduces the two approaches and highlights their main differences. It does not yet deal
with the technicalities of the subject, left to the incoming chapters. Rather, it develops the fundamental
concepts in a purposely informal way in order to set the terms of the debate.

1.2 Fundamental concepts

In general, any statistical exercise is concerned with the outcome of some random experiment.

definition 1.1: a random experiment is a process whose outcome is uncertain, and can be known
only once it is realized and observed.

1There exist actually more than two approaches to statistics, such as the symmetric and logical approaches. Those alternative
approaches are not of interest for this book and are not developed further: see for instance Poirier (1995) for more details.
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4 CHAPTER 1. BAYESIAN AND FREQUENTIST APPROACHS

Here are a few examples of random experiments.

example 1.1: the outcome of a coin flip.

example 1.2: the number of cars sold in a month at a car retailer’s.

example 1.3: the market return of a stock at the New York Stock exchange.

To understand the behaviour of a random experiment, the statistician creates a model which replicates its
statistical properties. This model typically depends on a number of parameters, denoted by θ .

definition 1.2: a statistical model is a model that describes the underlying process generating the
data. It is indexed by a family of parameters θ which determine the behaviour of the model.

This can be illustrated with the simple examples introduced above:

example 1.1 (continued): to model the outcome of a coin flip, the statistician may use a Bernoulli dis-
tribution with probability of success p. In this case, p represents the parameter of the model, so that
θ = {p}.

example 1.2 (continued): to model the number of cars sold during a month at a car retailer’s, the statis-
tician may use a Poisson experiment with intensity λ , which represents the mean of the process. In this
case, λ represents the parameter of the model, so that θ = {λ}.

example 1.3 (continued): to model the market return of a stock, the statistician may use a normal dis-
tribution, where the mean µ represents the expected return of the stock and the variance σ represents its
volatility. Here µ and σ represent the parameters of the model, and θ = {µ,σ}.

Because the parameters determine the behavior of the model, they represent the fundamental object of
interest. They thus constitute the values that the statistician wants to estimate. In this respect, the main
differences between the frequentist approach and the Bayesian approach arise in the way θ is considered,
and as a consequence in the methodologies employed to estimate it.

1.3 The frequentist approach

When statisticians talk about “statistics”, they usually mean the frequentist approach. Frequentist statis-
ticians believe in random experiments which can be repeated. They assume that with a sufficiently large
number of repetitions, probabilities can be deduced from observed frequencies, hence the name “frequen-
tist”. Concretely, for a given a random experiment repeated n times, and a possible outcome A of this
random experiment observed m times over the n trials, the frequentist approach defines the probability of
outcome A as:

definition 1.3: P(A) = lim
n→∞

m
n

For a model parameters, definition 1.3 yields two main implications. First, for any statistical experiment
and any outcome, there exists a unique and well defined probability which obtains as a limiting case of
observed frequencies. Therefore, any parameter θ involved in a statistical model is also characterised by a
unique and well-defined value. This value can be calculated exactly as long as one is capable of repeating
the underlying random experiment an infinite number of times. Thus, in frequentist statistics, θ is treated
as a fixed quantity.
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The second implication of definition 1.3 is that under the frequentist approach probabilities are deduced
from observed outcomes. The only source of information for a frequentist statistician thus consists in the
data collected for the experiment. Because this data is assumed to be generated by the statistical model,
any observation results from the parameter θ which determines the behaviour of the model. Following,
the data constitutes the basis of any estimation process for θ .

In this respect, a fundamental object of interest is known as the likelihood function.

definition 1.4: let y denote the sample of data collected by the statistician, and let θ denote the model
parameters; the likelihood function , denoted by f (y|θ), represents the density function of the ob-
served data y, for a given value of θ .

The likelihood function indicates how likely the observed data is for a given value of θ . A high value
for f (y|θ) indicates that it is plausible to obtain the observed data with the given θ . Conversely, a low
value for f (y|θ) implies that the selected θ makes the observed data unlikely to occur. A natural step then
consists in estimating θ by choosing the value which makes the observed data most likely. This is the
principle underlying the maximum likelihood methodology.

definition 1.5: the maximum likelihood estimation methodology consists in finding the value θ̂

which maximises the likelihood function f (y|θ). θ̂ is then called a point estimate for θ .

Given the information contained in the data, the point estimate θ̂ represents the best guess one can produce
about the true parameter value θ . When the data sample is not infinite, some uncertainty exists about the
parameter value. One may then want to construct confidence intervals on the parameter value.

definition 1.6: a confidence interval is an interval of values that contain the true value θ with high
probability, set by the statistician.

Alternatively, a hypothesis test can be conducted on the parameter value.

definition 1.7: a hypothesis test is an inference procedure establishing whether a default hypothesis
about θ called the null hyposthesis is true. If there is sufficient evidence, the null hypothesis is rejected
in favor of the so-called alternative hypothesis.

1.4 The Bayesian approach

The frequentist approach defines probabilities as a limiting case of experiments repeated an infinite num-
ber of times, as stated by definition 1.3. By contrast, the Bayesian approach considers that in practical
situations random experiments cannot be repeated an infinite number of times, or cannot be repeated at
all. For instance, the weather in Washington DC on July 4th 2000 is not a repeatable random experiment
since July 4th 2000 only occured once. Certain experiments can be repeated, such as the number of cus-
tomers visiting a local grocery store during a day. They may however not be repeated an infinite number
of times. Even if the number of repetitions tends to infinity, the random experiment being repeated may
not be exactly the same. A grocery store updates its prices and line of products from time to time. It
also runs sales, recruits new staff, modifies it display, and so on. These differences affect the number of
customers, and alter the underlying random experiment.
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For these reasons, Bayesian statistics considers that any random experiment involves fundamental uncer-
tainty, and that it is impossible to get rid of this uncertainty. Statisticians must then estimate probabilities
not only from the information carried by the data, but also from personal probability assessments which
reflect their subjective beliefs about the outcome of the experiment.

This has two main implications. First, the fundamental uncertainty implies that θ cannot be considered
as a fixed quantity anymore. Instead, θ must be treated as a random variable, and assigned a probability
distribution. As a consequence, the object of interest for the statistician is not anymore the fixed value of
θ (which is impossible to determine), but the probability distributions of the parameters θ .

Second, the fundamental uncertainty implies that the data resulting from observation does not constitute
a sufficient source of information. Because there can only be a finite number of data observations, and
because these observations are generated by different realisations of θ from its probability distribution, it
is impossible to eliminate the uncertainty associated with θ . As a consequence, the data can only represent
part of the information involved in the estimation process. It must be supplemented with additional infor-
mation provided by the statistician, which represents his personal belief about the random experiment.

Concretely, it implies that the likelihood function which represents the information contained in the data
is not sufficient anymore to obtain an estimate of θ . The estimation process must also involve the personal
assessment of the statistician about the distribution function of θ , which is known as the prior distribution.

definition 1.8: the prior distribution, denoted by π(θ), is the distribution function which represents
the personal belief of the statistician about the distribution of the parameters of interest θ .

Because the data is not the only source of information under the Bayesian approach, maximum likeli-
hood does not constitute a suitable methodology of estimation. To account for both the data information
contained in the likelihood function f (y|θ) and the personal information contained in the prior distibution
π(θ), a Bayesian statistician will apply a methodology known as Bayes Rule. This methodology produces
what is known as the posterior distribution for θ , which is a full distribution function reflecting both the
information contained in the data and the subjective information introduced by the statistician.

definition 1.9: the posterior distribution, denoted by π(θ |y), is the distribution function of the pa-
rameter of interest θ obtained by the application of Bayes rule. It is obtained by combining the likeli-
hood function f (y|θ) and the prior distribution π(θ), and represents the distribution of θ conditional
on having observed the data y.

Unlike the frequentist approach for which the estimation produces a single point estimate θ̂ , the Bayesian
approach results in a full posterior distribution π(θ |y). This posterior distribution summarizes all the
relevant information about θ and represents the workhorse of Bayesian statistics. It can be used for
instance to generate credibility intervals.

definition 1.10: a credibility interval is an interval over a posterior distribution within which a pa-
rameter value falls with a certain probability.
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The credibility interval represents the counterpart of the frequentist confidence interval, but its philosophy
is different. A confidence interval treats the parameter as fixed, creating an interval that hopefully contains
the true value. A credibility interval treats the parameter as random, and defines an interval that contains
its values with some given probability.

It is also possible to conduct hypothesis tests in a Bayesian framework.

definition 1.11: a Bayesian hypothesis test consists in a comparison of the posterior probabilities
under the null and alternative hypotheses. This comparison is summarized by a single value known as
the Bayes factor.

Unlike the frequentist approach which aims at testing for the true parameter value, a Bayesian hypothesis
test determines which model is more likely under the null and alternative hypotheses about θ .

1.5 Summary

This chapter has underlined the fundamental differences between the frequentist and Bayesian approaches.
Those differences are summarised in Table 5.1 for convenience.

frequentist Bayesian

random experiments can be infinitely repeated cannot be infinitely repeated
certainty certainty with infinite repetitions fundamental uncertainty
parameter θ unique, fixed value random variable
object of interest true value of θ probability distribution of θ

relevant information observed data only observed data and personal information
source of information likelihood function f (y|θ) likelihood function f (y|θ) and prior distribution π(θ)
estimation technique maximum likelihood Bayes rule
estimate for θ point estimate posterior distribution
intervals confidence interval credibility interval
hypothesis test decide of true value decide of best model

Table 1.1: Main differences between the frequentist and Bayesian approaches

The incoming chapters initiate the technical part of the discussion. Chapter 2 introduce basic probability
concepts and derives Bayes rule in the context of events and random variables. Chapter 3 then provides
some practice on the subject through a set of simple examples. Chapter 4 discusses some important
additional aspects of Bayesian priors and posteriors. Chapter 5 concludes the first part by providing
further insight on the properties of Bayesian estimates.
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CHAPTER 2

Bayes rule

This chapter introduces Bayes rule, a result that constitutes the foundation of the whole field of Bayesian
statistics. It does so first in the simple context of events, then extends to the more general notion of random
variables. The presentation remains informal, only dealing with the aspects required to understand the
incoming chapters. For this reason, the technicalities associated with formal probabilistic theory are left
aside.

2.1 Probabilities

Probabilities are fundamentally concerned with random experiments and their outcomes. The first element
of interest is thus the set of possible outcomes, known as the sample space.

definition 2.1: the sample space, denoted by Ω, is the set of all possible outcomes of a random
experiment. A subset of the sample space is called an event.

To illustrate this definition, let’s take a look at some simple examples:

example 2.1: consider the random experiment “roll a 6-face die”. Then the sample space is:
Ω = {1,2,3,4,5,6}.
The subsets A = {2,4,6}, B = {4,5,6} and C = {1} are examples of events. They respectively correspond
to: “the outcome of the roll is an even number”, “the outcome of the roll is a number greater than 3”, and
“the outcome of the roll is 1”.

example 2.2: consider the random experiment “pick a random number between 0 and 1”. Then the sample
space for this experiment is the closed interval Ω = [0,1].
The subsets A = [0.1,0.3] and B = [0.5,0.5] are examples event. They correspond to: “the picked number
is comprised between 0.1 and 0.3” and “the picked number is 0.5”.

Once equiped with a sample space, we associate probabilities to the events of interest by the way of a
function known as a probability measure.

definition 2.2: a probability measure is a function P(A) which associates a probability to each event
A.

For instance:

example 2.1 (continued): if the die is balanced, each face has a 1/6 probability to show up. So for an
event A containing |A| outcomes (|A| denotes the cardinality, or number of elements of A), we want the
probability to be P(A) = |A|/6.
So for instance, considering A = {2,4,6}, we obtain P(A) = |A|/6 = 3/6 = 1/2. Thus the probability of
obtaining an even number from the roll is 1/2, as expected.

9



10 CHAPTER 2. BAYES RULE

example 2.2 (continued): assume each number in [0,1] is equally likely to be picked by the computer.
This is a uniform setting in which the probability of any interval [a,b] is simply equal to its length (b−a).
Then P(A) = b−a.
So for instance, considering A = [0.1,0.3], we obtain P(A) = 0.3−0.1 = 0.2. The probability of picking
a number in the interval [0.1,0.3] is 0.2.

2.2 Bayes rule for events

To obtain Bayes rule, it is first necessary to introduce the concept of conditional probabilities.

definition 2.3: let A and B be two events on some sample space; the conditional probability of A
given B, denoted by P(A|B) is given by:

P(A|B) = P(A∩B)
P(B)

The conditional probability P(A|B) must be understood as: “what is the probability that event A occurs,
given that event B has occurred?”. Figure 2.1 helps to make sense of the conditional probability formula
in definition 2.3. If event B has occured, then clearly event A can only occur on the intersection portion
A∩B. However, we cannot use directly the probability P(A∩B) since the sample space to consider is
not the whole of Ω anymore, but is now restricted to event B. The conditional probability must thus be
defined as the ratio of the grey area (the probability P(A∩B)) over the surface of event B (the probability
P(B)).

Figure 2.1: A representation of conditional probabilities with an Euler diagram

This can be illustrated with our usual examples.

example 2.1 (continued): consider the events A = {2,4,6} (the outcome of the die roll is an even num-
ber) and B = {4,5,6} (the outcome of the die roll is greater than 3). The conditional probability P(A|B)
corresponds to “what is the probability that the outcome of the roll is even, given that it is greater than 3?”
We have P(A) = 1/2, P(B) = 1/2, A∩B = {4,6}, P(A∩B) = 1/3, and P(A|B) = (1/3)/(1/2) = 2/3
The unconditional probability of obtaining an even number P(A) = 1/2 has been updated into the condi-
tional probability P(A|B) = 2/3 with additional information provided from observing B.

example 2.2 (continued): let A = [0.1,0.3] and B = [0.2,0.4]
We have P(A) = 0.2, P(B) = 0.2, A∩B = [0.2,0.3], P(A∩B) = 0.1, and P(A|B) = 0.1/0.2 = 1/2
The unconditional probability of drawing a random number between 0.1 and 0.3 is P(A) = 1/5, but
increases to P(A|B) = 1/2 if it is observed that the outcome is comprised between 0.2 and 0.4.
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A first version of Bayes rule can now be obtained directly from the definition of conditional probability.
Indeed, definition 2.3 implies P(A|B) = P(A∩B)/P(B) and P(A∩B) = P(B|A)P(A). Substituting the
latter in the former yields Bayes rule:

definition 2.4: let A and B be two events on some sample space; Bayes rule is given by:

P(A|B) = P(B|A)P(A)
P(B)

The left-hand side of Bayes rule is the conditional probability P(A|B) which represents the probability
of event A once B has been observed. It is equal to the right-hand side made of three components:
the unconditional probability P(A), which represents the estimate of the probability of event A before
event B is observed; the probability P(B), which corresponds to the additional information obtained from
observing B; and the conditional probability P(B|A), which indicates how likely it is to observe B if event
A occurs. Bayes rule then says that P(A|B) is equal to the unconditional probability P(A) updated by the
additional evidence P(B|A)/P(B).

example 2.1 (continued): let A = {2,4,6} and B = {4,5,6}.
One has P(A) = 1/2, P(B) = 1/2, P(A∩B) = 1/3, and P(B|A) = 2/3
Hence P(A|B) = P(B|A)P(B)/P(A) = (2/3)× (1/2)/(1/2) = 2/3

example 2.2 (continued): let A = [0.1,0.3] and B = [0.2,0.4]
We have P(A) = 0.2, P(B) = 0.2, P(A∩B) = 0.1, and P(B|A) = 1/2
Hence P(A|B) = P(B|A)P(A)/P(B) = 1/2×0.2/0.2 = 1/2

2.3 Random variables

A preliminary version of Bayes rule has been introduced in the simple case of events. In practical appli-
cations however, Bayes rule is often used in the more general context of random variables.

definition 2.5: let Ω be some sample space; a random variable is a function X(ω) which associates
a value to each outcome ω of the sample space.

Informally, a random variable can be seen as a function providing an interpretation to the outcome of a
random experiment through the value it returns. For instance:

example 2.1 (continued): let X be the random variable defined as X(ω) = 1 if ω = 2,4,6, and X(ω) = 0
otherwise. Its interpretation is: “observe whether the outcome of the roll was even”.
Z(ω) = ω is also a random variable. Its interpretation is simply: “reports the outcome of the die roll”.

example 2.2 (continued): let X(ω) = 3ω−2.
X is a random variable that can be interpreted as a lottery where the player pays 2 to play, then gains 3
times a random amount ω comprised between 0 and 1.

Random variables can be of two kinds. If it is possible to count the values a random variable can take,
it is said to be discrete. If counting the values is impossible, typically because the random variables take
values on some continuous interval, it is said to be continuous.
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definition 2.6: a random variable X is called discrete if it takes only a finite or countable number
of values. By contrast, a random variable X is said to be continuous if its values represent some
continuous interval in R.

The difference is best understood with the usual set of examples:

example 2.1 (continued): let X be the random variable defined as X(ω) = 1 if ω = 2,4,6, and X(ω) = 0
otherwise. Then X is discrete since it takes a countable number of values (the two values 0 and 1).

example 2.2 (continued): let X(ω) = 3ω − 2. X takes values on the continuous interval [−2,1] and is
thus a continuous random variable.

So far our definition of random variables does not involve probabilities. The way probabilities are defined
for random variables depends on their types. Because a discrete random variable can take only a countable
number of values, it is possible to assign directly a probability to each value. This yields the concept of
probability mass function.

definition 2.7: let X be a discrete random variable; then X has a probability mass function f (x) such
that f (x) = P(X = x), with ∑x f (x) = 1.

The first statement defines the probability associated to each x value, while the second statement is just
the classical condition that probabilities over all possible values should sum up to 1.

example 2.1 (continued): let X be the random variable defined as X(ω) = 1 if ω = 2,4,6, and X(ω) =
0 otherwise. Its probability mass function is given by f (1) = P(X = 1) = P({2,4,6}) = 1/2, and
f (0) = P(X = 0) = P({1,3,5}) = 1/2. Also, f (1)+ f (0) = 1/2+1/2 = 1.

By contrast, continuous random take an uncountable number of possible values so that the probability of
obtaining any single value is 0. Probabilities then only make sense over continuous intervals, which yields
the notion of probability density function.

definition 2.8: let X be a continuous random variable; then X has a probability density function f (x)

such that: P(a≤ X ≤ b) =
∫ b

a
f (x)dx, with

∫
∞

−∞

f (x)dx = 1.

For instance:

example 2.2 (continued): let X(ω) = 3ω − 2. It can be shown that its probability density function is

f (x) = 1/3, so that for instance P(0≤ X ≤ 1) =
∫ 1

0
1/3dx = 1/3. Also,

∫
∞

−∞

f (x)dx =
∫ 1

−2
1/3dx = 1.

The conceptual difference between probability mass functions and probability density functions is illus-
trated by Figure 2.2. For the discrete random variable on the left panel, probabilities are attributed to each
value of the random variable. For the continuous random variable on the right panel, probabilities are only
defined by integrating over intervals (calculating the surface under the curve, such as the grey area).
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Figure 2.2: Examples of mass and density functions

2.4 Bayes rule for random variables

The previous sections focused on individual random variables. In practice however, most statistical models
involve more than one random variable at a time. We then want to consider probabilities not only for single
random variables, but also for groups or random variables considered jointly. For instance, if X and Z are
two random variables, we may want to determine what is the probability that X takes some value x while
at the same time Z takes some value z. If X and Z are discrete, they take only a countable number of values
so that it is possible to assign probabilities directly to each pair of values (x,z). This yields the concept of
joint probability mass function, which generalizes the concept of probability mass function.

definition 2.9: let X and Z be two discrete random variables; then X and Z have a joint probability
mass function f (x,z) such that f (x,z) = P(X = x,Z = z).

Consider again the usual 6-face die example:

example 2.1 (continued): let X be defined as X(ω) = 1 if ω = 2,4,6, and X(ω) = 0 otherwise. Let
Z(ω) = ω . The joint probability mass function f (x,z) is then given by:

z = 1 z = 2 z = 3 z = 4 z = 5 z = 6

x = 0 P({1}) = 1/6 P(∅) = 0 P({3}) = 1/6 P(∅) = 0 P({5}) = 1/6 P(∅) = 0
x = 1 P(∅) = 0 P({2}) = 1/6 P(∅) = 0 P({4}) = 1/6 P(∅) = 0 P({6}) = 1/6

Table 2.1: Joint probability mass function of X and Y

If instead X and Z are continuous, probabilities become defined by the joint probability density function,
the generalisation of the density function.

definition 2.10: let X and Z be two continuous random variables; then X and Z have a joint

probability density function f (x,z) such that P(a≤ X ≤ b,c≤ Z ≤ d) =
∫ b

a

∫ d

c
f (x,z)dzdx.

Interestingly, it is possible to recover the probability functions of the individual random variables from
their joint probability function. This is known as marginalisation.
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definition 2.11: let X and Z be two random variables; the marginal probability mass or density func-
tion f (x) obtains from:

f (x) = ∑
z

f (x,z) (X discrete) or f (x) =
∫

∞

−∞

f (x,z)dz (X continuous)

In other words, the marginal is obtained by summing over all the possible values of the other variable.
This is illustrated by our usual example.

example 2.1 (continued): let X be defined as X(ω) = 1 if ω = 2,4,6, and X(ω) = 0 otherwise. Let
Z(ω) = ω . The marginal distributions f (x) and f (z) obtain from the joint mass function, as shown in
Table 2.2:

z = 1 z = 2 z = 3 z = 4 z = 5 z = 6 Marginal: f (x)

x = 0 P({1}) = 1/6 P(∅) = 0 P({3}) = 1/6 P(∅) = 0 P({5}) = 1/6 P(∅) = 0 3/6
x = 1 P(∅) = 0 P({2}) = 1/6 P(∅) = 0 P({4}) = 1/6 P(∅) = 0 P({6}) = 1/6 3/6

Marginal: f (z) 1/6 1/6 1/6 1/6 1/6 1/6

Table 2.2: Marginal mass functions of X and Y

Section 2.2 introduced the concept of conditional probabilities for events. We now want to generalize the
concept to random variables, with a similar interpretation. For instance, given two random variables X
and Z, what is the probability that X takes some value x if we observe that Z has taken a given value z?
This notion of conditional distribution is central in Bayesian analysis, and constitutes the foundation of
Bayes law for random variables.

definition 2.12: let X and Z be two random variables; let f (x,z) , f (x) and f (z) respectively denote
their joint and marginal probability mass (or density) functions. The conditional probability mass
function (or conditional probability density function) is given by:

f (x|z) = f (x,z)
f (z)

Note the similarities between definition 2.12 and definition 2.3 in the case of events. To illustrate the
concept, consider the usual 6-face die example:

example 2.1 (continued): let X be defined as X(ω) = 1 if ω = 2,4,6, and X(ω) = 0 otherwise. Let
Z(ω) = ω . Consider the difference between f (x) and f (x|z). For x = 1 and z = 2, Table 2.2 gives
f (x)= 3/6, f (z)= 1/6 and f (x,z)= 1/6. So f (x|z)= (1/6)/(1/6)= 1. In other words, the unconditional
probability f (x) to observe X = 1 (the outcome is an even number) is 1/2. However, once Z = 2 is observed
(the outcome of the roll is 2), we now for sure that the outcome is even and we update the probability to
f (x|z) = 1.

A concept related to the idea of conditional distribution is that of independence. Informally, we say that
two random variables X and Z are independent if “knowing Z tells us nothing about the value of X”. Note
that definition 2.12 implies that f (x,z) = f (x|z) f (z). The intuition is then that if Z says nothing about
X , the conditional density f (x|z) should be equal to the unconditional density f (x). This in turn yields
f (x,z) = f (x) f (z). In other words, when two random variables are independent, their joint density is just
the product of the marginal densities.

definition 2.13: let X and Z be two random variables; X and Z are independent if for any x and z:
f (x,z) = f (x) f (z)
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It is now possible to introduce the final and main result of this chapter. It follows directly from definition

2.11 that f (x|z) = f (x,z)
f (z)

and f (x,z) = f (z|x) f (x). Substituting the latter in the former yields Bayes rule

for random variables.

definition 2.14: let X and Z be two random variables; Bayes rule is given by:

f (x|z) = f (z|x) f (x)
f (z)

This simple formula constitutes the core of Bayesian analysis and will be used thoughout the whole book.
Note again the similarities with Bayes rule for events given by definition 2.4. The formula says that the
conditional density f (x|z) is equal to the unconditional density f (x), updated by the additional information
f (z|x)/ f (y) obtained from the observation of Z.

example 2.1 (continued): let X be defined as X(ω) = 1 if ω = 2,4,6, and X(ω) = 0 otherwise. Let
Z(ω) = ω . For x = 1 and z = 2, Table 2.2 gives f (x) = 3/6, f (z) = 1/6, f (x,z) = 1/6, so that f (y|z) =
(1/6)/(3/6) = 1/3.
Following, f (x|z) = f (z|x) f (x)/ f (z) = (1/3)(3/6)/(1/6) = 1.
The unconditional density f (x) = 1/2 has been updated to f (x|z) = 1 once the value Z = z has been
observed.
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CHAPTER 3

Three applied examples

Chapter 1 introduced the fundamental concepts of Bayesian statistics, while chapter 2 developed the
technical framework leading to Bayes rule. This chapter puts these elements together and conducts the
first actual applications of Bayesian statistics, building on the simple examples introduced in chapter 1
(a coin flip, the number of cars sold in a day, and the return of a stock at the New York Stock Exchange).

3.1 Principles of estimation

Recall from chapter 1 that our objective consists in estimating some parameter θ , using a sample of
observations y. Under a frequentist approach, estimation by maximum likelihood is straightforward:
obtain first the likelihood function f (y|θ) from the data, then find the value θ̂ that maximizes it.

In a Bayesian context however, estimation is conducted with Bayes rule. Definition 2.14 provides the
general formula f (x|z) = f (z|x) f (x)/ f (z), for any two random variables X and Z. Since the Bayesian
approach treats both the data y and the parameters θ as random variables, we can substitute for x = θ and
z = y to obtain the version of Bayes rule used in empirical applications.

definition 3.1: let y denote the sample of observations and θ the parameters of interest to estimate;
Bayes rule is given by:

π(θ |y) = f (y|θ)π(θ)
f (y)

In the above definition, the use of π(θ |y) and π(θ) in place of f (θ |y) and f (θ) is a pure matter of notation.
It is useful to take a closer look at the elements of definition 3.1.

On the left-hand side, π(θ |y) is the posterior distribution. It represents the distribution of the random
variable θ , conditioned on having observed the data y, and represents the main object of interest.

On the right-hand side, f (y|θ) is the likelihood function. It is the density function of the observed data y
for a given value of θ . It represents the information contained in the sample of observations.

The third term is the prior distribution π(θ) representing the subjective prior belief about θ . It constitutes
the information available before the data is observed.

The final term is the marginal likelihood f (y). It represents the unconditional density of the data, or in
other words the data likelihood regardless of the value of θ . Often, this term cannot be estimated directly.

Definition 3.1 says that the posterior distribution π(θ |y) is equal to the prior distribution π(θ), updated by
the additional information obtained from observing the data f (y|θ) and the overall data likelihood f (y).
If the marginal likelihood was known, Bayes rule 3.1 could be applied directly. In practice however this
term is unknown, which motivates a brief but important digression.

17



18 CHAPTER 3. THREE APPLIED EXAMPLES

Notice that the marginal likelihood f (y) does not involve θ . In this respect, it only plays the role of a
normalization constant ensuring that the posterior π(θ |y) integrates to 1, and carries no information on θ .
It is then convenient to ignore it, using the notion of kernel.

definition 3.2: let f (x) be some probability density function that can be expressed as f (x) = α.g(x),
with α a multiplicative term not involving x. Then we write:
f (x) ∝ g(x)

which reads “ f (x) is proportional to g(x)”. g(x) is called the kernel of the density function f (x), and
α is called the normalization constant .

Definition 3.2 says that f (x) is proportional to g(x) up to some multiplicative constant α that only serves
as a normalization device. In Bayesian analysis it is convenient to work with kernels rather than with the
actual density functions, typically ignoring the normalization constant. For our purpose, an immediate
application of this strategy consists in rewriting Bayes rule in definition 3.1 as a kernel to get rid of the
marginal likelihood.

definition 3.3: let y denote the sample of observations and θ the parameters of interest to estimate;
Bayes rule is given by:
π(θ |y) ∝ f (y|θ)π(θ)

Definition 3.3 says that the posterior π(θ |y) is proportional to the likelihood function f (y|θ) multiplied by
the prior π(θ), up to the marginal likelihood f (y) that represents the normalization constant and is ignored.
The Bayesian estimation process then reduces to a trivial product between the likelihood function f (y|θ)
and the prior π(θ).

We can now summarize the estimation procedures under the frequenctist and Bayesian approaches.

Summary of estimation procedures:

frequentist approach (maximum likelihood): Bayesian approach (Bayes rule):

� set the likelihood function f (y|θ) � set the likelihood function f (y|θ)
� find θ̂ that maximizes f (y|θ) � set the prior distribution π(θ)

� apply π(θ |y) ∝ f (y|θ)π(θ)

3.2 A first example: flipping a coin

Consider again the coin flip example developed in chapter 1. Assume you want to determine the proba-
bility that a coin will come up with “heads”. A simple strategy consists in flipping the coin n times, and
observe the number m of “heads” outcomes.

The first step consists in setting a statistical model for the experiment. A simple choice consists in mod-
elling each of the n flips as a Bernoulli distribution with probability of success p. The parameter of
interest of the model is thus θ = {p}. Denoting then by yi the outcome of the ith flip (1 for a success, 0
for a failure), the probability mass function for each flip is given by:

f (yi|p) = pyi(1− p)1−yi (1.3.1)

Start with a frequentist estimate of θ . Following the procedure suggested in section 3.2, we need to set
the likelihood function f (y|θ), which represents the density function for the sample of observations as
a whole. Equation (1.3.1) only provides the density for a single observation. To obtain the joint density
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over the whole sample, we assume that the observations are generated independently. Then from definition
2.13, the joint density becomes the product of the individual densities.

definition 3.4: let y= y1,y2, · · · ,yn denote a sample of n observations, with f (yi|θ) the density of each
individual observation. The likelihood function f (y|θ) obtains by assuming independence between
the observations, so that:

f (y|θ) =
n

∏
i=1

f (yi|θ)

Applying definition 3.4 to the individual densities (1.3.1), the likelihood function obtains as:

f (y|p) =
n

∏
i=1

pyi(1− p)1−yi (1.3.2)

After some manipulations, it can be shown (book 2, p. 3) that the likelihood function rewrites as:

f (y|p) = pm(1− p)n−m (1.3.3)

A maximum likelihood estimate can then be obtained by finding the value θ̂ that maximizes the likeli-
hood function f (y|p). In practice, it is often easier to maximize the logarithm of the likelihood. This is
equivalent since extrema are not affected by monotonic transformations.

definition 3.5: let f (y|θ) denote the likelihood function; the maximum likelihood estimate θ̂ obtains
by maximizing the log-likelihood function:

θ̂ = argmax
θ

log( f (y|θ))

Taking the log of the likelihood function (1.3.3), the maximum likelihood estimate becomes:

p̂ = argmax
p

m log(p)+(n−m) log(1− p) (1.3.4)

The maximum is found by setting the derivative with respect to p to 0 and solving for p (book 2, p. 3).
This yields:

p̂ = m/n (1.3.5)

The maximum likelihood estimate p̂ is thus the proportion of observed successes over the total number of
trials, or in other words the empirical mean.

Consider now a Bayesian estimate of p. The procedure developed in section 3.2 first requires the likeli-
hood function f (y|p), which is already known (equation (1.3.3)). We then need a prior distribution π(p)
for p. Since p represents a probability, we want a prior distribution that produces values between 0 and 1.
The Beta distribution then constitutes a good candidate. Its density is given by:

π(p) =
Γ(α +β )

Γ(α)Γ(β )
pα−1(1− p)β−1 (1.3.6)

α and β are constants that determine the overall shape of the distribution. They are known as hyperpa-
rameters.

definition 3.6: a hyperparameter is a parameter which defines the prior distribution.
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The choice of values for α and β will be discussed shortly. For now, we implement the final step of the
estimation procedure, applying Bayes rule 3.3 to the likelihood function (1.3.3) and the prior distribution
(1.3.6). This yields:

π(p|y) ∝ pm(1− p)n−m× pα−1(1− p)β−1 (1.3.7)

Notice that the multiplicative constant Γ(α+β )
Γ(α)Γ(β ) in equation (1.3.6) has been dropped. This is because it

does not involve p, and can hence also be relegated to the normalization constant when working with the
kernel of the posterior π(p|y). Gathering the terms in (1.3.7), we obtain:

π(p|y) ∝ pᾱ−1(1− p)β̄−1 (1.3.8)

with:

ᾱ = α +m β̄ = β +n−m (1.3.9)

Looking at equation (1.3.8), we recognize the kernel of a Beta distribution with shape parameters ᾱ and β̄ .
Following, we conclude that the posterior distribution is Beta with shapes ᾱ and β̄ : π(p|y)∼ Beta(ᾱ, β̄ ).
Interestingly, the posterior distribution belongs to the same family as the prior: this is known as a conjugate
distribution.

definition 3.7: a prior and a posterior distribution are called conjugate distributions if they belong
to the same family of distribution.

Let us now consider a numerical example. Assume the coin is flipped n = 100 times, and yields heads
m = 63 times. The maximum likelihood estimate for p is thus p̂ = m/n = 63/100 or 0.63.

Consider now the Bayesian estimate. We first need to set the values of α and β for the prior π(p). The
choice must reflects our personal belief about the distribution, and will have a significant impact on the
posterior distribution. Figure 3.1 shows the Beta density functions for different values of α and β .

Figure 3.1: Probability density function of the Beta distribution for different α and β values
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It can be seen that the distribution is symmetric around 0.5 for α = β , and skewed otherwise. Also, the
larger α and β , the tighter the distribution and the smaller the variance. So, what could be good values
of α and β? Things get really subjective here, but the following propositions are reasonable. First, coins
should be balanced on average, with the same chance to biased upward or downward. This implies a
symmetric distribution centered at 0.5, and thus α = β . Also, a potential bias should be reasonably small.
Assuming for instance that the typical probability of success is comprised between 0.45 and 0.55 yields
a standard deviation of 0.05, and from property d.27 of the Beta distribution this is obtained by setting
α = β = 40. Given these choices for the prior, we can eventually calculate the posterior parameters:
ᾱ = α +m = 40+63 = 103 and β̄ = β +n−m = 40+100−63 = 77.

The whole example is represented on Figure 3.2. The dashed line on the right is the likelihood function,
peaking at the maximum likelihood estimate p̂= 0.63. The left grey curve represents the prior distribution.
As implied by our choice for α and β , it is symmetric around its mean of 0.5, and has a 0.05 standard
deviation. Finally, the black plain line in the middle reflects the posterior distribution. It appears as
a compromise between the prior and the likelihood, with a mean of approximately 0.57, somewhere
between the prior mean and the maximum likelihood estimate.
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Figure 3.2: Likelihood, prior and posterior for the coin flip example

3.3 A second example: modelling monthly car sales

Consider now the car sales example developed in chapter 1. A car retailer is interested in predicting the
monthly sales of a local outlet store to check how profitable the store is. To do so, a history of n month is
collected with the observed sales for each month.

We first set a statistical model for the experiment. Because the monthly sales are some integer between 0
and infinity, a simple choice is a Poisson model with an intensity of λ . The parameter of interest is thus
θ = {λ}. Denoting by yi the sales of month i, the probability mass fonction for each month is given by:

f (yi|λ ) =
λ yie−λ

yi!
(1.3.10)

Consider first a frequentist estimate of θ . Following the procedure suggested in section 3.2, we first need
the likelihood function f (y|θ). Using the individual densities (1.3.10) and definition 3.4, it can be shown
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(book 2, p. 3) that the likelihood function obtains as:

f (y|λ ) = λ ∑
n
i=1 yi e−nλ

∏
n
i=1 yi!

(1.3.11)

Applying definition 3.5 and taking the log of the likelihood function (1.3.11), a maximum likelihood
estimate of λ obtains from:

λ̂ = argmax
λ

(
n

∑
i=1

yi

)
log(λ )−nλ −

n

∑
i=1

log(yi!) (1.3.12)

The maximum is found by setting the derivative with respect to λ to 0 and solving for λ (book 2, p. 3):

λ̂ =
1
n

n

∑
i=1

yi (1.3.13)

The maximum likelihood estimate λ̂ is thus simply the empirical mean over the sample of observations.

Consider now a Bayesian estimate of λ . The likelihood function f (y|λ ) is already known (equation
(1.3.11)). We then need a prior distribution π(λ ) for λ . Since λ represents both the mean and variance
of the Poisson distribution, we need a prior that produces positive values. The Gamma distribution then
represents a good candidate. Its density is given by:

π(λ ) =
b−a

Γ(a)
λ

a−1 e−λ/b (1.3.14)

a and b are the shape and scale hyperparameters of the Gamma distribution whose values will be discussed
shortly. For now, we apply Bayes rule 3.3 to the likelihood function (1.3.11) and the prior distribution
(1.3.14) to obtain:

π(λ |y) ∝ λ ∑
n
i=1 yi e−nλ ×λ

a−1 e−λ/b (1.3.15)

Again, all the multiplicative terms not involving λ have been relegated to the normalization constants.
Rearranging yields (book 2, p. 4):

π(λ |y) ∝ λ
ā−1 e−λ/b̄ (1.3.16)

with:

ā = a+
n

∑
i=1

yi b̄ =
b

bn+1
(1.3.17)

Looking at equation (1.3.16), we recognize the kernel of a Gamma distribution with shape ā and scale b̄.
Following, we conclude that π(λ |y) ∼ G(ā, b̄). Again, we have here an example of a conjugate distribu-
tion.

Let us now consider a numerical example. Assume the retailer has an history of 5 years of monthly sales
for the store, i.e., a sample of 60 observations. The total sales over the sample is 505, for a sample mean
of 8.42. The maximum likelihood estimate for λ is thus λ̂ = 8.42.

Consider now the Bayesian estimate. We first need to set the values of a and b for the prior π(λ ). Assume
the retailer knows from the data records of other stores in the district that the average monthly sales of cars
are 11.2, with a variance of 0.16. The prior belief is thus a Gamma distribution with a mean of 11.2 and a
variance of 0.16. From property d.20 of the Gamma distribution, this can be achieved by setting a = 784
and b = 0.0143. Given these choices for the prior, we can eventually calculate the posterior parameters:
ā = a+∑

n
i=1 yi = 784+505 = 1289 and b̄ = b

bn+1 = 0.0077, implying a posterior mean of 9.92.

The whole example is represented on Figure 3.3.



3.4. A THIRD EXAMPLE: PREDICTING A STOCK RETURN 23

6 8 10 12 14
0

1

2

Pr
io

r 
an

d 
po

st
er

io
r

0

0.5

1

1.5e-74

L
ik

el
ih

oo
d

likelihood
prior
posterior

Figure 3.3: Likelihood, prior and posterior for the car sales example

The likelihood function is depicted by the left dashed line, peaking at the maximum likelihood estimate
of 8.42. The grey line on the right represents the Gamma prior with the constructed mean of 11.2 and
standard deviation of 0.4. In the middle, the black line shows the Gamma posterior with a mean of 9.92.
Even though the car retailer had a prior opinion of an average 11.2 sales a month, the empirical evidence
suggested a smaller value of 8.42. The final belief accounts for both sources of information and lies
somewhere in-between, at an average of 9.92.

3.4 A third example: predicting a stock return

Consider finally the third example introduced in chapter 1. An investor wants to predict the return of a
given stock traded on the NYSE. To do so, a sample of n past annual return values is collected for the
stock.

We first set a statistical model for the experiment. Because returns can take any positive or negative
values, a normal distribution constitutes a good candidate. This distribution is characterized by a mean
parameter µ and a variance parameter σ , which respectively represent the average return and the volatility
of the stock. For now we keep things simple and assume that the stock volatility σ is known. The only
parameter remaining to estimate for the investor is thus the average return µ , so that θ = {µ}. Denoting
by yi the stock return on year i, the probability density function for each return is given by:

f (yi|µ) = (2πσ)−1/2 exp
(
−1

2
(yi−µ)2

σ

)
(1.3.18)

Consider first a frequentist estimate of θ . Following the procedure suggested in section 3.2, we first set
the likelihood function f (y|θ). Using the individual densities (1.3.18) and definition 3.4, it can be shown
(book 2, p. 4) that the likelihood function obtains as:

f (y|µ) = (2πσ)−n/2 exp

(
−1

2

n

∑
i=1

(yi−µ)2

σ

)
(1.3.19)

Applying definition 3.5 and taking the log of the likelihood function (1.3.19), a maximum likelihood
estimate of µ obtains from:
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µ̂ = argmax
µ

−n/2 log(2πσ)− 1
2

n

∑
i=1

(yi−µ)2

σ
(1.3.20)

The maximum is found by setting the derivative with respect to µ to 0 and solving for µ (book 2, p. 4):

µ̂ =
1
n

n

∑
i=1

yi (1.3.21)

The maximum likelihood estimate µ̂ is thus simply the empirical mean over the sample of observations.

Consider now a Bayesian estimate of µ . The likelihood function f (y|λ ) is already known (equation
(1.3.19)). We then set a prior distribution π(µ) for µ . Since µ represents the average stock return, it can
take any real value. The normal distribution thus represents a good candidate, with a density given by:

π(µ) = (2πv)−1/2 exp
(
−1

2
(µ−m)2

v

)
(1.3.22)

m and v are hyperparameters respectively representing the mean and variance of the prior distribution.
Next, we apply Bayes rule 3.3 to the likelihood function (1.3.19) and the prior distribution (1.3.22). This
yields:

π(µ|y) ∝ exp

(
−1

2

n

∑
i=1

(yi−µ)2

σ

)
× exp

(
−1

2
(µ−m)2

v

)
(1.3.23)

Again, any multiplicative term not involving µ has been relegated to the normalization constants.
Intuitively, because (1.3.23) involves two normal distributions, the posterior should be normal as well.
The difficulty consists in turning the pair of normal densities into a single one, and the methodology to do
so is known as completing the squares.

definition 3.8: completing the squares is the methodology combining a normal likelihood function
f (y|θ) with a normal prior π(θ) to obtain a normal posterior π(θ |y).

Completing the squares is used again and again throughout the book, so it is useful to detail it step by
step. First start from (1.3.23), develop the quadratic forms and group the terms to obtain (book 2, p. 5):

π(µ|y) ∝ exp

(
−1

2

[
µ

2
(

n
σ
+

1
v

)
−2µ

(
1
σ

n

∑
i=1

yi +
m
v

)
+

1
σ

n

∑
i=1

y2
i +

m2

v

])
(1.3.24)

To complete the squares, we then add terms in (1.3.24) to make it factorable into a single quadratic form.

π(µ|y) ∝ exp

(
−1

2

[
µ

2
(

n
σ
+

1
v

)
−2µ

v̄
v̄

(
1
σ

n

∑
i=1

yi +
m
v

)
+

1
σ

n

∑
i=1

y2
i +

m2

v
+

m̄2

v̄
− m̄2

v̄

])
(1.3.25)

We have multiplied the second term by v̄/v̄, and added and subtracted the quadratic term m̄2/v̄. Clearly,
(1.3.24) and (1.3.25) are equal, whatever the definition we choose for m̄ and v̄. The trick however consists
in finding the right definition to permit factorization. The values we want are:

v̄ =
(

n
σ
+

1
v

)−1

m̄ = v̄

(
1
σ

n

∑
i=1

yi +
m
v

)
(1.3.26)

Substituting this back in (1.3.25) eventually yields:

π(µ|y) ∝ exp

(
−1

2

[
µ2

v̄
−2µ

m̄
v̄
+

m̄2

v̄
+

1
σ

n

∑
i=1

y2
i +

m2

v
− m̄2

v̄

])
(1.3.27)
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Now we can factor the first three terms into a single quadratic form that will be the kernel of the posterior,
and set the final three terms as a separate multiplicative constant:

π(µ|y) ∝ exp
(
−1

2
(µ− m̄)2

v̄

)
exp

(
−1

2

[
1
σ

n

∑
i=1

y2
i +

m2

v
− m̄2

v̄

])
(1.3.28)

Noting finally that the second multiplicative term does not involve µ , it can be relegated to the normaliza-
tion constant to yield:

π(µ|y) ∝ exp
(
−1

2
(µ− m̄)2

v̄

)
(1.3.29)

We eventually recognize in (1.3.29) the kernel of a normal distribution, and conclude that the posterior
distribution of µ is normal with mean m̄ and variance v̄: π(µ|y)∼ N(m̄, v̄). We have succesfully applied
the completing the squares methodology, constituted of equations (1.3.23) - (1.3.29). Also, we note that
we face again a case of conjugate distributions since both the prior and the posterior are normal.

Let us now consider a numerical example. Assume the investor has a history of 20 years of yearly returns
on the stock, i.e., a sample of n = 20 observations. The mean annual return over the sample sample
mean is $18.2, with a known variance of σ = 5.2. The maximum likelihood for the average return is thus
µ̂ = 18.2.

Consider now the Bayesian estimate. We first set the values of m and v for the prior π(µ). Assume the
investor has made his calculations about the future profits of the company and expects an average annual
return of $12.7 with a variance of 0.4. The prior belief is thus m = 12.7 and v = 0.4. It is then possible to
calculate the posterior parameters using equation (1.3.28), yielding m̄ = 16.03 and v̄ = 0.16.

The whole example is represented on Figure 3.4.
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Figure 3.4: Likelihood, prior and posterior for the stock return example

The likelihood function is depicted by the right dashed line, peaking at the maximum likelihood estimate
of 18.2. The grey line on the left represents the normal prior with a mean of 12.7 and a variance of 0.4.
In the middle, the black line shows the normal posterior with a mean of 16.03. The investor had a prior
opinion of an average stock return of $12.7. Yet, empirical evidence suggested a much better performance
of $18.2. The final posterior belief represents a compromise, with an updated average return of $16.03.
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CHAPTER 4

Further aspects of Bayesian priors and
posteriors

Chapter 3 introduced the fundamentals of Bayesian analysis with three simple examples. In this chapter
we develop a number of additional aspects of Bayesian models that arise in practical applications.

4.1 Multivariate priors

Most practical Bayesian applications involve several parameters, so that θ = {θ1, · · · ,θn}. In this case,
Bayes rule is still given by definition 3.3 as π(θ |y) ∝ f (y|θ)π(θ), but the prior π(θ) = π(θ1, · · · ,θn) and
the posterior π(θ |y) = π(θ1, · · · ,θn|y) now denote joint densities.

To define a joint prior, one simply assumes independence between the different parameters θ1, · · · ,θn so
that from definition 2.13, the joint prior is the product of the individual priors.

definition 4.1: let θ = {θ1, · · · ,θn} be the model parameters; the joint prior distribution is obtained
by assuming independence between the parameters, so that:
π(θ1, · · · ,θn) = π(θ1) · · · π(θn)

To illustrate this, consider again the stock return example developed in chapter 3:

example 4.1: an investor wants to predict the return on a given stock. The statistical model for the stock
return is a normal distribution with mean µ and variance σ . We now assume that both µ and σ are
unknown, hence the parameters of interest to estimate are θ = {µ,σ}.

Following definition 3.3, Bayes rule for the model is π(µ,σ |y) ∝ f (y|µ,σ)π(µ,σ). Given definition 4.1
we assume independence between µ and σ so that π(µ,σ |y) ∝ f (y|µ,σ)π(µ)π(σ).

The likelihood f (y|µ,σ) and the prior π(µ) are already known and given by (1.3.19) and (1.3.22). Be-
cause σ represents a variance term, it takes only positive values. The inverse Gamma distribution is then
a good choice and we set π(σ) ∼ IG(α/2,δ/2), where α and δ respectively denote the shape and scale
hyperparameters of the distribution1. The prior density is then:

π(σ) =
δ/2α/2

Γ(α/2)
σ
−α/2−1 exp

(
− δ

2σ

)
(1.4.1)

Applying Bayes rule π(µ,σ |y) ∝ f (y|µ,σ)π(µ)π(σ) and relegating to the normalization constant any
term not involving µ or σ , we eventually obtain the kernel of the joint posterior as:

1The inverse Gamma is here preferred over the Gamma distribution. This is because the inverse Gamma is conjugate with the
normal likelihood, while the Gamma is not and hence does not yield tractable posteriors. The division of the hyperparameters
α and δ by 2 is also for conjugacy with the normal likelihood.

27
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π(µ,σ |y) ∝ σ
−n/2 exp

(
−1

2

n

∑
i=1

(yi−µ)2

σ

)
× exp

(
−1

2
(µ−m)2

v

)
×σ

−α/2−1 exp
(
− δ

2σ

)
(1.4.2)

What to do with this joint posterior will be the subject of section 4.3.

4.2 Hierarchical priors

We have seen in definition 3.6 that prior distributions are defined by parameters called hyperparameters.
Most of the time, these hyperparameters are constants exogenously supplied by the statistician. Sometimes
however we want to add one level to the model by assuming that the hyperparameters themselves are
random variables which are assigned a prior distribution and integrated in the estimation process.

definition 4.2: let θ be a parameter whose prior distribution is conditional on some hyperparameter
λ ; a hierarchical prior is a prior which considers λ as a random variable and assigns it a prior
distribution π(λ ), known as a hyperprior.

Because the hyperparameter λ is treated as a random variable, the prior π(θ) becomes a joint prior
π(θ ,λ ). From definition 2.12, this joint prior can then rewrite as π(θ ,λ ) = π(θ ,λ )/π(λ )× π(λ ) =
π(θ |λ )π(λ ). In other words, the hierarchical prior is expressed as a product of the conditional prior
π(θ |λ ) with the hyperprior π(λ ).

To illustrate this, consider again the stock return example.

example 4.1 (continued): we still model the stock return as a normal distribution with mean µ and vari-
ance σ . However, we set a hierarchical prior for µ by assuming that its prior variance depends on the
stock volatility parameter σ . Precisely, we set π(µ|σ)∼ N(m,vσ), so that:

π(µ|σ) = (2πvσ)−1/2 exp
(
−1

2
(µ−m)2

vσ

)
(1.4.3)

This prior is similar to (1.3.22) except that the variance is now also proportional to σ .

The two parameters of the model are θ = {µ,σ}, and Bayes rule is π(µ,σ |y) ∝ f (y|µ,σ)π(µ,σ). Given
the hierarchical prior, we rewrite π(µ,σ) = π(µ|σ)π(σ) and Bayes rule becomes
π(µ,σ |y) ∝ f (y|µ,σ)π(µ|σ)π(σ). The likelihood f (y|µ,σ) and the hyperprior π(σ) are given by
(1.3.19) and (1.4.1). Combining with the prior π(µ|σ) given by (1.4.3) and relegating to the
normalization constant any term not involving µ or σ , the kernel of the posterior then obtains as:

π(µ,σ |y) ∝ σ
−n/2 exp

(
−1

2

n

∑
i=1

(yi−µ)2

σ

)
×σ

−1/2 exp
(
−1

2
(µ−m)2

vσ

)
×σ

−α/2−1 exp
(
− δ

2σ

)
(1.4.4)

4.3 Marginal posteriors

Most Bayesian models involve several parameters θ1, · · · ,θn. In this case, Bayes rule yields a joint poste-
rior distribution π(θ1, · · · ,θn|y). As such, the joint posterior is not interpretable. We thus want to derive
the marginal posterior distributions π(θ1|y), · · · ,π(θn|y) for each individual parameter. This is done by
marginalizing the joint posterior, as provided by definition 2.11.
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definition 4.3: let π(θ1, · · · ,θn|y) be a joint distribution; the marginal posterior distributions
π(θ1|y), · · · ,π(θn|y) obtain by integrating out the remaining parameters, so that:

π(θi|y) =
∫

π(θ1, · · · ,θn|y)dθ6=i

Marginalization with definition 4.3 may or may not be possible, depending on the form of the posterior
distribution. To see this, consider again the stock return example.

example 4.1 (continued): sections 4.1 and 4.2 both provide a joint posterior π(µ,σ |y) for the stock return
example. Start with the hierarchical prior of section 4.2, which results in the posterior (1.4.4). It is possible
to marginalize this posterior, though some work is required. First develop, group the terms and complete
the squares to obtain:

π(µ,σ |y) ∝ σ
−1/2 exp

(
−1

2
(µ− m̄)2

σ v̄

)
×σ

−ᾱ/2−1 exp
(
− δ̄

2σ

)
(1.4.5)

with:

v̄ =
(

n+
1
v

)−1

m̄ = v̄

(
n

∑
i=1

yi +
m
v

)
ᾱ = α +n δ̄ = δ +

n

∑
i=1

y2
i +

m2

v
− m̄2

v̄
(1.4.6)

This reformulation makes it easier to marginalize for µ and σ . We can see that (1.4.5) is a product of
two kernels: the kernel of a normal distribution with mean m̄ and variance v̄, and the kernel of an inverse
Gamma distribution with shape ᾱ/2 and scale δ̄/2.

We then obtain the marginal posterior distributions π(σ |y) and π(µ|y) from direct application of definition
4.3. Calculations are easy for σ : since µ only appears in the first density as the kernel of a normal
distribution, integration yields a constant, leaving only the second kernel:

π(σ |y) =
∫

π(µ,σ |y)dµ ∝ σ
−ᾱ/2−1 exp

(
− δ̄

2σ

)∫
σ
−1/2 exp

(
−1

2
(µ− m̄)2

σ v̄

)
dµ

∝ σ
−ᾱ/2−1 exp

(
− δ̄

2σ

)
(1.4.7)

We recognize the kernel of an inverse Gamma distribution with shape ᾱ/2 and scale δ̄/2:
π(σ |y)∼ IG(ᾱ/2, δ̄/2).

The calculations are trickier for µ . As σ appears in all the terms of (1.4.5), we group them and integrate:

π(µ|y) =
∫

π(µ,σ |y)dσ ∝

∫
σ
−(ᾱ+1)/2−1 exp

(
− δ̄ +(µ− m̄)2/v̄

2σ

)
dσ (1.4.8)

Now, here is the trick: we recognize in (1.4.8) the kernel of an inverse Gamma distribution with shape
(ᾱ+1)/2 and scale (δ̄ +(µ−m̄)2/v̄) / 2. Now, from definition 2.8 of the probability density function and
definition 3.2 of the kernel, one obtains

∫
f (x)dx=α

∫
g(x)dx= 1 so that

∫
g(x)dx= 1/α . In other words,

integrating the kernel yields the reciprocal of the normalization constant of the distribution. Applied to
the inverse Gamma kernel (1.4.8), this yields:

π(µ|y) ∝ Γ

(
ᾱ +1

2

)(
δ̄ +(µ− m̄)2/v̄

2

)− ᾱ+1
2

(1.4.9)

After some manipulations, it can be shown (book 2, p. 8) that this reformulates as :

π(µ|y) ∝

(
1+

1
ᾱ

(µ− m̄)2

δ̄ v̄/ᾱ

)− ᾱ+1
2

(1.4.10)
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This is the kernel of a Student distribution with location m̄, scale δ̄ v̄/ᾱ and degrees of freedom ᾱ:
π(µ|y)∼ T (m̄, δ̄ v̄/ᾱ, ᾱ).

We now continue the numerical example introduced in section 3.4. We keep the same values as before
except for the prior variance on µ that is reduced to v = 0.1 to compensate for the additional uncertainty
implied by the proportionality with σ in π(µ|σ)∼N(m,vσ). Also, we need to define the hyperparameters
α and δ for the prior π(σ) defined in (1.4.1). Because the data suggests a variance around 5, we set an
inverse Gamma distribution with a mean of 5 and a variance of 1. From property d.24 of the inverse
Gamma distribution, this is obtained by setting α = 54 and δ = 260. We then obtain the posterior values
m̄ = 16.36, v̄ = 0.033, ᾱ = 74 and δ̄ = 560.47. The implied marginal posterior distributions along with
the priors2 are depicted in Figure 4.1:
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(a) Prior and marginal posterior for µ
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(b) Prior and marginal posterior for σ

Figure 4.1: Marginal posterior distributions for µµµ and σσσ

The Student marginal posterior for µ peaks at its average of 16.36, far from the prior distribution and
its mean of 12.7, showing that much of the data evidence has been taken into account to update the prior
belief. Similarly, the inverse Gamma marginal posterior for σ implies a mean of 7.78, implying a volatility
larger than the prior belief of 5.

What if we now try to marginalize the joint posterior distribution (1.4.2) resulting from independent priors
for µ and σ? It turns out that in this case marginalization using definition 4.3 is not possible. The terms
involving µ and σ are too interwoven to calculate the integrals. In this case one must rely on simulation
methods, which will be the object of part II of the book.

4.4 Point estimates

The posterior distribution π(θ |y) summarizes all the available information about θ . It thus constitutes the
basis of any inference procedure. Suppose we want to obtain a single-value estimate of θ , based on the
posterior distribution. The idea is to set a loss function L(θ̂ ,θ) which measures the loss incurred if the
estimate is θ̂ , but the true value is θ .

definition 4.4: let π(θ |y) denote the posterior distribution of some parameter θ ; the point estimate of
θ , called the Bayes estimator and denoted by θ̂ is the value that minimizes the expectation of some
loss function:
θ̂ = argmin

θ

E[L(θ̂ ,θ)] = argmin
θ

∫
L(θ̂ ,θ)π(θ |y)dθ

2 Using σ = 1 for the hierarchical prior π(µ|σ) of µ .
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Several different loss functions are possible. Classical choices are the quadratic loss function
L(θ̂ ,θ) = (θ̂ − θ)2, the absolute-value loss function L(θ̂ ,θ) = |θ̂ − θ |, and the 0-1 loss function
L(θ̂ ,θ) = 1(|θ̂ −θ |> c), with 1(.) the indicator function and c some positive constant.

Consider for instance the quadratic loss function. From definition 4.4, the Bayes estimator obtains from:

θ̂ = argmin
θ

∫
(θ̂ −θ)2

π(θ |y)dθ (1.4.11)

The minimum is found by calculating the derivative of the function and setting it equal to zero, which
yields:

2
∫
(θ̂ −θ)π(θ |y)dθ = 0 (1.4.12)

Solving finally for θ̂ (book 2, p. 8), the Bayes estimator is given by:

θ̂ =
∫

θ π(θ |y)dθ (1.4.13)

From (1.4.13) we conclude that θ̂ = E(θ |y): the Bayes estimator under the quadratic loss function is
simply the mean of the posterior distribution π(θ |y). Alternative loss functions yield different point
estimators, typically corresponding to some measure of central tendency. The absolute-value loss function
for instance yields the median as the Bayes estimator, while the 0-1 loss function results in the mode
when c→ 0. In practical applications the median is often prefered over the mean and the mode due to its
robustness to extreme values.

example 4.1 (continued): consider point estimates for the parameters µ and σ in the stock return exam-
ple, using the marginal posteriors developed in section 4.3. We retain the median as a point estimate. For
µ , the marginal posterior is π(µ|y) ∼ T (m̄, δ̄ v̄/ᾱ, ᾱ). Since the mean and the median coincide for the
Student distribution, we have µ̂ = m̄ = 16.36. For σ , the marginal posterior is π(σ |y) ∼ IG(ᾱ/2, δ̄/2).
Using the 0.5 quantile of the inverse Gamma distribution yields the point estimate σ̂ = 7.64.

4.5 Credibility intervals

Another important concept in inference is that of estimation interval. The Bayesian intervals are known
as credibility intervals and represent the counterparts of the frequentist confidence intervals.

definition 4.5: let θ be some parameter; a credibility interval of level α is an interval of the form:
P(θL ≤ θ ≤ θU |y) = 1−α

where θL and θU respectively denote the lower and upper bounds of the interval.

In other words, the Bayesian credibility interval is an interval that contains (1−α)% of the posterior
distribution of θ . Even though the credibility and confidence intervals may look similar, they differ
fundamentally in conception. First, a confidence interval only integrates information from the data, while
a Bayesian credibility interval also integrates the prior information. Second, and most importantly, the
two methods consider the parameter θ differently. The frequentist approach treats θ as fixed and the
confidence interval as random, hoping it contains the true parameter value with a probability (1−α)%.
By constrast, the Bayesian credibility interval treats the interval boundaries as fixed and the parameter θ as
random, the credibility region only delimiting a range that contains (1−α)% of the posterior distribution
π(θ |y).
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In general, many different credibility intervals are possible for a given level α . One possibility consists in
using the shortest possible interval, known as the highest posterior density interval. Finding this shortest
interval may however prove computationally demanding. Often a simpler solution consists in building an
equal-tail interval, that is, an interval that defines θL as the α/2 quantile and θU as the 1−α/2 quantile
of the posterior distribution π(θ |y). This choice is appealing when one uses the median (the 0.5 quantile)
as a point estimate, for then it guarantees that the point estimate lies within the credibility interval.

example 4.1 (continued): we want to estimate credibility intervals for the parameters µ and σ in the stock
return example, using the marginal posteriors developed in section 4.3. We use equal-tail intervals and set
α = 0.05 to obtain 95% credibility intervals. For µ , the marginal posterior is π(µ|y) ∼ T (m̄, δ̄ v̄/ᾱ, ᾱ).
We use the quantiles of the Student distribution to obtain µL = 15.25 and µU = 17.48. For σ , the marginal
posterior is π(σ |y)∼ IG(ᾱ/2, δ̄/2). Using the quantiles of the inverse Gamma, we obtain σL = 5.62 and
σU = 10.76.

The marginal posterior distributions along with their point estimates and credibility intervals are depicted
in Figure 4.2:
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Figure 4.2: Point estimates and credibility intervals for µµµ and σσσ

4.6 The marginal likelihood

Often, we are interested in evaluating the overall goodness of fit of our model to the data. In this respect,
the marginal likelihood f (y) plays an important role in Bayesian analysis. Recall from definition 3.1 that
the marginal likelihood represents the unconditional data density. In other words it provides a measure of
the data likelihood regardless of the value of θ , and thus an assesment of the model in general.

The marginal likelihood f (y) should not be confused with the likelihood function f (y|θ). There
exists in fact a tight relation between the two concepts. From definitions 2.11 and 2.12, it follows that

f (y) =
∫

f (y,θ)dθ =
∫

f (y,θ)/π(θ)× π(θ)dθ =
∫

f (y|θ)π(θ)dθ . In other words, the marginal

likelihood represents the expectation of the likelihood function f (y|θ) over the prior distribution π(θ),
that is, the average fit of the data over the prior belief.

definition 4.6: let f (y|θ) and π(θ) respectively denote the likelihood function and the prior distribu-
tion for some parameter θ . The marginal likelihood , denoted by f (y), is given by:

f (y) =
∫

f (y|θ)π(θ)dθ
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Unlike Bayes rule where it is possible to work with kernels only, the marginal likelihood requires the
inclusion of the normalization constants. Calculating the marginal likelihood can be tricky and sometimes
impossible, but for simple models it can be obtained from direct application of definition 4.6.

example 4.1 (continued): we want to calculate the marginal likelihood for the stock return example, using
the hierarchical prior developed in section 4.2. Applying definition 4.6, we obtain:

f (y) =
∫ ∫

f (y|µ,σ) π(µ|σ) π(σ) dµdσ (1.4.14)

Using (1.3.19), (1.4.3) and (1.4.1), the expression becomes:

f (y) =
∫ ∫

(2πσ)−n/2 exp

(
−1

2

n

∑
i=1

(yi−µ)2

σ

)

× (2πvσ)−1/2 exp
(
−1

2
(µ−m)2

vσ

)
× δ/2α/2

Γ(α/2)
σ
−α/2−1 exp

(
− δ

2σ

)
dµdσ (1.4.15)

Note that unlike the posterior distribution, the marginal likelihood requires inclusion of the normalization
constants. After some rearrangement and completing the squares, the expression becomes (book 2, p. 9):

f (y) = π
−n/2 (1+ vn)−1/2 δ α/2

δ̄ ᾱ/2

Γ(ᾱ/2)
Γ(α/2)

×
∫ ∫

(2π v̄σ)−1/2 exp
(
−1

2
(µ− m̄)2

σ v̄

)
× δ̄/2ᾱ/2

Γ(ᾱ/2)
σ
−ᾱ/2−1 exp

(
− δ̄

2σ

)
dµdσ (1.4.16)

m̄, v̄, ᾱ and δ̄ are defined as in (1.4.6). The expression may look messy, but the terms in the integral
respectively represent the density function of a normal distribution and an inverse Gamma distribution.
Therefore they both integrate to unity, only leaving the simple expression:

f (y) = π
−n/2 (1+ vn)−1/2 δ α/2

δ̄ ᾱ/2

Γ(ᾱ/2)
Γ(α/2)

(1.4.17)

It is customary to reformulate the marginal likelihood in base 10 logarithm as m(y) = log10( f (y)). Let us
now calculate the marginal likelihood for the stock return example. Given (1.4.17) and the values used in
section 4.3, we obtain m(y) =−26.07. There is no direct interpretation for this value, but in the incoming
section we will see how the marginal likelihood can be used to run model comparison and hypothesis
testing.

4.7 Hypothesis testing and model comparison

In statistics, we are often interested in evaluating two competing hypotheses in light of the data, and
then take a decision about which to accept. In a Bayesian context, hypothesis testing is straightforward.
Given two competing hypotheses and some observed data, we first specify separate prior distributions to
quantitatively describe each hypothesis. Combining the likelihood function for the data with each of the
prior distributions, we obtain hypothesis-specific models. The overall goodness of fit of the model with the
data under each hypothesis is then established from the marginal likelihood. Bayesian hypothesis testing
thus amounts to finding the model best supported by the data through the marginal likelihood criterion.
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It is worth noting that the procedure is general and is not restricted to hypothesis testing. It can be used for
model comparison in general, even if the models are characterized by different parameters, priors, vari-
ables, and so on. Concretly, assume we want to compare two models M1 and M2, possibly corresponding
to two competing hypotheses. For i = 1,2, we want to establish the probability that Mi is the correct
model, given the data. This is obtained from the conditional probability P(Mi|y). Applying Bayes rule
3.1, it can be expressed as:

P(Mi|y) =
f (y|Mi) P(Mi)

f (y)
(1.4.18)

f (y|Mi) is the likelihood function under model Mi, and P(Mi) represents the prior belief that model Mi is
indeed the correct model. f (y) is the overall marginal likelihood, that is, the data density regardless of the
model chosen. After basic manipulations, equation (1.4.18) reformulates as (book 2, p. 10):

P(Mi|y) =
P(Mi) fi(y)

f (y)
fi(y)≡

∫
f (y|Mi,θi) π(θ |Mi)dθi (1.4.19)

The numerator is constituted of two terms. The first term is the prior belief P(Mi) that model Mi is the
correct one. The second term fi(y) can be recognised from definition 4.6 as the marginal likelihood for
model Mi. To compare the two models, we simply take the ratio of the posterior probabilities.

definition 4.7: the posterior odds between models M1 and M2 is given by:

K =
P(M1|y)
P(M2|y)

=
P(M1)

P(M2)

f1(y)
f2(y)

The ratio P(M1)
P(M2)

is known as the prior odds, while the ratio f1(y)
f2(y)

is the Bayes factor.

We see that model comparison reduces to a simple formula. First, it takes into account the prior odds,
which reflects our prior belief about which model Mi is correct. In practice, the uninformative choice
P(M1) = P(M2) = 0.5 is often made, in which case the posterior odds reduces to the Bayes factor. A larger
value of the Bayes factor then indicates the the data is more supportive of model M1, while values close
to 1 indicate that both models are supported equally well. To decide on whether evidence is conclusive,
Jeffreys (1961) propose to consider the value log10(K) = m1(y)−m2(y), with mi(y) = log10( fi(y)). He
provides the following guidelines:

log10(K) evidence strength

log10(K) < 0 negative evidence (supports M2)
0 ≤ log10(K) < 1/2 weak evidence for M1
1/2 ≤ log10(K) < 1 substantial evidence for M1
1 ≤ log10(K) < 3/2 strong evidence for M1
3/2 ≤ log10(K) < 2 very strong evidence for M1
log10(K) ≥ 2 decisive support for M1

Table 4.1: Jeffrey’s Guidelines

example 4.1 (continued): assume the investor has the same prior belief as in section 4.3: an average
annual return of $12.7 with a variance of 0.1. He might change his investment strategy if the return proves
significantly higher, at a level of $15 with a variance of 0.1. We thus test the two competing hypotheses
by comparing the model M1 with m = 15 and v = 0.1 and the model M2 with m = 12.7 and v = 0.1. Using
the uninformative choice P(M1) = P(M2) = 0.5, the test reduces to the Bayes factor. Using (1.4.17),
we obtain m1(y) = −22.28 and m2(y) = −26.07 so the test value is log10(K) = 3.78. There is decisive
support for M1 and the investor decides to change his investment strategy.
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4.8 Predictions

Given a statistical model, predicting new data values often represents a central concern. Concretely, for a
given sample of data observations y, we want to predict some new unobserved data value ŷ.
Because the context is Bayesian, this should translate into some conditional density f (ŷ|y). Also, the
prediction should take into account the underlying uncertainty about θ . This motivates the following
formula:

f (ŷ|y) = f (ŷ,y)
f (y)

=
∫ f (ŷ,y,θ)

f (y)
dθ =

∫ f (ŷ,y,θ)
f (y,θ)

f (y,θ)
f (y)

dθ =
∫

f (ŷ|y,θ)π(θ |y)dθ (1.4.20)

where use has been made of definitions 2.11 and 2.12. We can see that the conditional density takes a
convenient form. It represents the expectation of the density function f (ŷ|y,θ) for the unobserved data ŷ
over the posterior distribution π(θ |y).

definition 4.8: let ŷ be some new unobserved data value; the posterior predictive distribution f (ŷ|y)
is given by:

f (ŷ|y) =
∫

f (ŷ|y,θ) π(θ |y) dθ

where f (ŷ|y,θ) denotes the likelihood function for the predicted value ŷ.

Forming a prediction then reduces to a basic application of definition 4.8. This yields a full posterior
predictive distribution from which point estimates and credibility intervals can be obtained directly, using
the methods developed in sections 4.4 and 4.5.

example 4.1 (continued): the investor now wants to predict the market return of the stock, using the
hierarchical model developed in section 4.2. The prediction will integrate both the uncertainty about the
average return µ and its volatility σ . From definition 4.8, the posterior predictive distribution obtains
from:

f (ŷ|y) =
∫ ∫

f (ŷ|y,µ,σ)π(µ,σ |y)dµdσ (1.4.21)

Given equation (1.3.18), the likelihood function f (ŷ|y,µ,σ) for the predicted value ŷ is given by:

f (ŷ|y,µ,σ) = (2πσ)−1/2 exp
(
−1

2
(ŷ−µ)2

σ

)
(1.4.22)

Combining with the posterior π(µ,σ |y) given by (1.4.4) and relegating to the normalization constant any
term not involving ŷ,µ or σ yields:

f (ŷ|y) ∝

∫ ∫
σ
−1/2 exp

(
−1

2
(ŷ−µ)2

σ

)
×σ

−n/2 exp

(
−1

2

n

∑
i=1

(yi−µ)2

σ

)

×σ
−1/2 exp

(
−1

2
(µ−m)2

vσ

)
×σ

−α/2−1 exp
(
− δ

2σ

)
dµdσ (1.4.23)

This is not a pretty formula, but after some manipulations (book 2, p. 10) it can be expressed as:

f (ŷ|y) ∝

(
1+

1
ᾱ

(ŷ− m̄)2

δ̄ (1+ v̄)/ᾱ

)−(ᾱ+1)/2

(1.4.24)

where m̄, v̄, ᾱ and δ̄ are defined as in (1.4.6). This is recognised as the kernel of a Student distribution
with location m̄, scale δ̄ (1+ v̄)/ᾱ and degrees of freedom ᾱ: f (ŷ|y)∼ T (m̄, δ̄ (1+ v̄)/ᾱ, ᾱ).
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Using the numerical values obtained in section 4.3, we obtain a posterior predictive density with location
m̄ = 16.36, scale δ̄ (1+ v̄)/ᾱ = 9.46 and degrees of freedom ᾱ = 47. This yields a median point estimate
of 16.36, and a 95% credibility interval of ŷL = 10.18 and ŷU = 22.56. The distribution, along with its
point estimate and credibility interval is depicted in Figure 4.3:

Figure 4.3: Posterior predictive distribution for the stock return example

From the distribution, the investor predicts a return comprised with 95% probability between 10.18 and
22.56, with a median forecast at 16.36.



CHAPTER 5

Properties of Bayesian estimates

This final introductory chapter focuses on the properties of posterior distributions. It provides further
insights on their behaviours, and considers specifically the impact of the sample size and the specification
of the prior distribution.

5.1 Posterior distribution as a compromise between prior and likelihood

The posterior distribution involves the combination of the prior distribution with the likelihood function.
It is therefore natural to expect that since it contains the information from both sources, it will appear as
a compromise between them. This is in fact true, and contitutes a general feature of Bayesian inference.
The three applied examples developed in chapter 3 made this point apparent, especially when looking at
Figures 3.2, 3.3 and 3.4 which all show the posterior between the prior and the likelihood function. We
now make this point formal by looking at the example algebra.

example 5.1: consider again the coin flip example developed in section 3.2. The posterior distribution is
π(p|y) ∼ Beta(ᾱ, β̄ ), with ᾱ = α +m and β̄ = β + n−m. Denoting the posterior mean by E(p|y), the
prior mean by E(p) and the maximum likelihood estimate by p̂, it can be shown that (book 2, p. 15):

E(p|y) = γ E(p)+(1− γ) p̂ with γ =
α +β

α +β +n
(1.5.1)

In other words, the posterior mean is a weighted average between the prior mean and the maximum
likelihood estimate, the weight being defined by the hyperparameters α and β and the sample size n.

example 5.2: consider again the car sale example developed in section 3.3. The posterior distribution is
π(λ |y)∼ G(ā, b̄), with ā = a+∑

n
i=1 yi and b̄ = b

bn+1 . It can then be shown that (book 2, p. 15):

E(λ |y) = γ E(λ )+(1− γ) λ̂ with γ =
1

bn+1
(1.5.2)

The posterior mean is a weighted average between the prior mean and the maximum likelihood estimate,
the weight being defined by the hyperparameter b and the sample size n.

example 5.3: consider again the stock return example developed in section 3.4, assuming that µ is the
only parameter to estimate. The posterior distribution is π(µ|y) ∼ N(m̄, v̄), with v̄ =

( n
σ
+ 1

v

)−1 and
m̄ = v̄

( 1
σ

∑
n
i=1 yi +

m
v

)
. It can then be shown that (book 2, p. 16):

E(µ|y) = γ E(µ)+(1− γ) µ̂ with γ =
σ

vn+σ
(1.5.3)

The posterior mean is a weighted average between the prior mean and the maximum likelihood estimate,
the weight being defined by the variance σ , the hyperparameter v and the sample size n.
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These results are summarised in Table 5.1, along with the posterior variances of the parameters.

Example parameter prior mean MLE posterior mean weight γ posterior variance

coin flip p
α

α +β

m
n

γ E(p)+(1− γ)p̂
α +β

α +β +n
(α +m)(β +n−m)

(α +β +n)2(α +β +n+1)

car sales λ ab
1
n

n

∑
i=1

yi γ E(λ )+(1− γ)λ̂
1

bn+1
(a+∑

n
i=1 yi)b2

(bn+1)2

stock return µ m
1
n

n

∑
i=1

yi γ E(µ)+(1− γ)µ̂
σ

vn+σ

σ

n+σ/v

Table 5.1: Posteriors as weigthed average of prior mean and maximum likelihood estimate

In our three examples it was possible to represent the posterior mean E(θ |y) as a weighted average
E(θ |y) = γ E(θ) + (1− γ) θ̂ of the maximum likelihood estimate θ̂ and the prior mean E(θ). Is it
always possible to do so? Diaconis and Ylvisaker (1979) show that the answer is yes for conjugate priors
belonging to the family of exponential distributions. This family comprises many common distributions
including the normal, Beta, and Gamma distributions.

For other priors, the posterior mean may possibly not be expressed in that form. Even in this case, the
posterior distribution remains a compromise between the prior information and the data, with its center
somewhere in-between. How much weight is attributed to each component then depends on the sample
size and the prior tightness, as developed in the incoming sections.

5.2 Large VS. small samples

We now consider the impact of the sample size on the posterior distribution. Intuitively, a large sample
means a large amount of data information relative to that contained in the prior. Following, we expect
the posterior to reflect more the likelihood function than the prior distribution. This is indeed correct, and
represents a fundamental feature of Bayesian estimates.

Consider the weight column of Table 5.1. It is easily seen that for all three examples the weight γ

diminishes as n increases, pushing the posterior mean E(θ |y) away from the prior mean E(θ) and to-
wards the maximum likelihood estimate θ̂ . In the limit case where n → ∞, we have γ → 0 and the
posterior mean coincides with the maximum likelihood estimate. Conversely, when n→ 0 we see that
γ → 1 and E(θ |y)→ E(θ). This is because there is no data information at all so that all the weight goes
to the prior.

Interestingly enough, the sample size n also impacts the posterior variance. Looking at the final column of
Table 5.1, we see that as n increases the posterior variance diminishes for the three examples. As n→ ∞

the posterior variance tends to 0 and the posterior distribution collapses to a single mass point at the
maximum likelihood estimate θ̂ . On the other hand, when n→ 0 the posterior variance converges to the
prior variance. In fact, in this case, the posterior distribution as a whole converges to the prior distribution.
This is again due to the absence of data information which leaves only the prior to carry the estimation.
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These properties are illustrated in Figure 5.1 which plots the likelihood, prior and posterior for the stock
return example with sample size n = 1 on the left and n = 300 on the right.
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(b) Large sample (n = 300)

Figure 5.1: Likelihood, prior and posterior with small and large samples

On the left panel (small sample) the posterior distribution matches the prior distribution almost perfectly.
The likelihood function is widely spread, reflecting imprecise information about the parameter. On the
right panel (large sample) the posterior gets much closer to the likelihood function, as the latter now
provides most of the available information on the parameter. It becomes also tighter, reflecting improved
accuracy through the larger number of observations.

To summarize:

When n is small:

� the likelihood function plays a negligible role, and most of the weight is given to the prior distribution.
� the posterior mean and variance converge to their prior counterparts.
� the posterior distribution is identical to the prior.

When n is large:

� the prior becomes marginal, and most of the weight goes to the likelihood function.
� the posterior mean converges to the maximum likelihood estimator.
� the posterior variance tends to 0, and the posterior as a whole becomes a degenerate distribution with a
mass point at the maximum likelihood estimator.

5.3 Informative VS. uninformative priors

The prior distribution reflects our subjective belief about the parameter θ . We may be confident in this
prior belief, in which case we want the prior distribution π(θ) to be granted much weight. On the contrary
we may have only vague knowledge about θ , in which case we want to put little weight to the prior and
leave most of the decision to the data, i.e. the likelihood function f (y|θ).

definition 5.1: an uninformative prior or diffuse prior is a prior distribution π(θ) that reflects vague
or nonexistent knowledge about the parameter θ . The distribution contains no prior information and
leaves the burden of estimation entirely to the data.
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The informativeness of a prior distribution π(θ) is directly related to the prior variance Var(θ). A tight
prior distribution means that we are very confident in our prior information, so that much weight is at-
tributed to the prior. In the limit case where Var(θ)→ 0, the posterior π(θ |y) converges to the prior
π(θ).

By contrast, a loose prior distribution implies vague or imprecise knowledge of θ and translates into a
large prior variance. In this case, the data will represent the bulk of the information and the posterior will
attribute all the weight to the likelihood function. In the limit case where Var(θ)→ ∞, the prior becomes
uninformative and the posterior distribution π(θ |y) converges to the likelihood function f (y|θ).

An extreme way to generate uninformative priors is to use an improper prior, a prior that is not integrable
and exhibits infinite variance.

definition 5.2: an improper prior is a prior distribution π(θ) whose integral is infinity. By contrast,
a prior distribution whose integral is unity is called a proper prior.

For instance, to specify a prior distribution on some parameter θ taking real values, we may use the im-
proper prior π(θ) ∝ 1. This defines a uniform distribution over the interval [−∞,+∞]. The distribution
integrates to infinity and connot be normalised to one. Improper priors will typically yield proper posteri-
ors, which makes them appealing to reflect agnostic prior beliefs. However, they prevent the calculation
of the marginal likelihood which requires the normalization constants. In this respect, it is preferable to
specify a proper prior (even weakly informative) whenever possible.

To illustrate these properties, consider again the weight column of Table 5.1. For the coin flip example,
a diffuse Beta prior for p can be obtained by setting α → 0 and β → 0. In this case the weight γ tends
to 0 and all the weight get to the maximum likelihood estimate p̂. On the other hand, setting α → ∞ and
β → ∞ results in a very tight prior and in this case it is easily seen that γ tends to 1, attributing all the
weight to the prior distribution.

For the car sales example, a diffuse Gamma prior can be obtained by setting b→ ∞, in which case it is
easily seen that γ tends to 0. Conversely, a tight prior obtains by setting b→ 0, resulting in the weight γ

tending to 1.

For the stock return example, the prior variance is just v. An uninformative prior can then be obtained by
setting v→ ∞, and then γ tends to 0. Conversely, with v→ 0 the prior gets informative and γ tends to 1,
putting all the weight on the prior.

These properties are illustrated in Figure 5.2 which plots the likelihood, prior and posterior for the stock
return example with prior variance v = 0.01 on the left and v = 5 on the right.
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(a) Small prior variance (v = 0.01)
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Figure 5.2: Likelihood, prior and posterior with small and large prior variance
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On the left panel (small prior variance), the tight prior reflects a strong confidence in the prior belief.
Following, all the weight goes to the prior and the posterior distribution matches it almost perfectly. On
the right panel (large prior variance), the prior is seen to be widely spread, reflecting the lack of accurate
information. This pushes the posterior towards the likelihood function, the burden of estimation now
being exclusively on the data.

To summarize:

When Var(θ) is small:

� the likelihood function plays a negligible role, and most of the weight is given to the prior distribution.
� the posterior mean and variance converge to their prior counterparts.
� the posterior distribution is identical to the prior.

When Var(θ) is large:

� the prior becomes marginal, and most of the weight goes to the likelihood function.
� the posterior mean converges to the maximum likelihood estimator.
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PART II

Simulation methods
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CHAPTER 6

The Gibbs sampling algorithm

This chapter and the next one introduce the simulation methods that constitute the workhorse of modern
Bayesian econometrics. This chapter focuses on the Gibbs sampling algorithm, the simplest approach
whenever simulation methods are needed. Chapter 7 then discusses the Metropolis-Hastings algorithm, a
more general but also more computationally intensive alternative. The two chapters adopt a cookbook ap-
proach: the methods are introduced without developing the underlying mathematical theory. The algebra
behind the algorithms is introduced only in chapter 8, and the readers uninterested in mathematical details
may safely skip this part.

6.1 Gibbs sampling: motivation

Consider again the stock return example introduced in chapter 3: an investor wants to predict the return
of a given stock on the NYSE. The return is modelled as a normal distribution with mean µ and variance
σ . Section 3.4 introduced the simplest version of the problem, assuming that only µ was unknown. In
section 4.2 the problem was made more realistic by assuming that both µ and σ were unknown, and it
was solved using a hierarachical prior. However, the hierarchical prior is undesirable because it relies on
the strong assumption that the prior variance of µ is proportional to σ .

Ideally, µ and σ must be modelled as independent parameters, as was done in section 4.1. The priors for µ

and σ are respectively given by π(µ)∼ N(m,v) (equation (1.3.22)) and π(σ)∼ IG(α/2,δ/2) (equation
(1.4.1)). Combined with the likelihood function (1.3.19) and applying Bayes rule, the joint posterior is
given by equation (1.4.2), repeated here for convenience:

π(µ,σ |y) ∝ σ
−n/2 exp

(
−1

2

n

∑
i=1

(yi−µ)2

σ

)
× exp

(
−1

2
(µ−m)2

v

)
×σ

−α/2−1 exp
(
− δ

2σ

)
(2.6.1)

Following definition 4.3, we would like to obtain the marginal posteriors from π(µ|y,σ) =
∫

π(µ,σ |y)dσ

and π(σ |y,µ) =
∫

π(µ,σ |y)dµ . However, as already stated at the end of section 4.3, it is not possible to
calculate these integrals as the µ and σ terms are too interwoven to permit marginalization.

This example shows the limits of traditional Bayesian methods: even though the model is simple and in-
volves only two parameters, it does not have closed forms solutions for its posterior distributions. Because
of such difficulties, Bayesian econometrics up to the 1970’s was essentially restricted to trivial conjugate
models with easily evaluable posteriors. In the 1980’s, as more sophisticated methods became avail-
able under the frequentist approach, interest in Bayesian methods gradually declined. This changed in
the 1990’s with the dramatic rise in computing power. Simulation methods that were unimaginable in the
1970’s became trivially accessible with modern computers. This eventually led to the developement of the
so-called Markov Chain Monte Carlo methods (often abbreviated as MCMC methods), and in particular
the Gibbs sampling algorithm.

45



46 CHAPTER 6. THE GIBBS SAMPLING ALGORITHM

6.2 Gibbs sampling: the algorithm

Whenever analytical solutions are unavailable, it may still be possible to evaluate the marginal posteriors
numerically. By this we mean that it is possible to sample values from the marginal posterior distributions
even though their analytical form is unknown. By sampling sufficiently many values, one obtains an
empirical distribution that approximates the real distribution and can be used to obtain empirical point
estimates, credibility intervals, and so on.

The Gibbs sampling algorithm represents the simplest approach to simulation methods. It is available
whenever the conditional posteriors are known distributions from which it is possible to sample values.
Consider a model with n parameters θ = {θ1, · · · ,θn}, joint posterior distribution π(θ1, · · · ,θn|y), and
conditional posteriors π(θ1|y,θ2, · · · ,θn), · · · , π(θn|y,θ1 · · · ,θn−1) (we will see soon how to derive these
conditional posteriors). Assume the conditional posteriors are known distributions so that we can easily
sample values from them. The Gibbs sampling algorithm then consists in:

algorithm 6.1: Gibbs sampling algorithm

1. set any initial values θ
(0)
1 , · · · ,θ (0)

n for the n parameters (these initial values are unimportant for the
rest of the algorithm).

2. at the first iteration, draw:

θ
(1)
1 from π(θ1|y,θ (0)

2 , · · · ,θ (0)
n )

θ
(1)
2 from π(θ2|y,θ (1)

1 , · · · ,θ (0)
n )

...

θ
(1)
n from π(θn|y,θ (1)

1 , · · · ,θ (1)
n−1)

3. at iteration j, draw:

θ
( j)
1 from π(θ1|y,θ ( j−1)

2 , · · · ,θ ( j−1)
n )

θ
( j)
2 from π(θ2|y,θ ( j)

1 , · · · ,θ ( j−1)
n )

...

θ
( j)
n from π(θn|y,θ ( j)

1 , · · · ,θ ( j)
n−1)

4. repeat until the desired number of iterations is realised.

The principle behind the algorithm is simple: draw sequentially the parameters θ1, · · · ,θn from their condi-
tional posteriors distributions π(θ1|y,θ2, · · · ,θn), · · · , π(θn|y,θ1 · · · ,θn−1), and repeat the process a large
number of times. After a certain number of iterations, the algorithm converges to the target distributions
which are the marginal posterior distributions π(θ1|y), · · · , π(θn|y).

In technical terms, we say that after a sufficient number of iterations known as the transient sample or
burn-in sample, the algorithm converges to the invariant distribution of the Markov Chain, which is
just the set of marginal posteriors π(θ1|y), · · · , π(θn|y). The order in which the parameters θ1, · · · ,θn

are drawn within each iteration is unimportant, which may sometimes prove convient. Note Also that the
existence of a transient sample implies that the initial draws are not sampled from the invariant distribution
and must then be discarded.
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These remarkable convergence properties constitute the core of modern numerical methods applied to
Bayesian analysis. Their only requirements are knowledge of the conditional posterior distributions for
the model, and sufficient computer speed to accomplish the steps. It now remains to discuss how the
conditional posteriors can be obtained. Using definition 2.12, and denoting by θ j 6=i the set of all parameters
except θi, it follows directly that:

π(θi|y,θ j 6=i) =
π(y,θi,θ j 6=i)

π(y,θ j 6=i)
=

π(y,θ)
π(y,θ j 6=i)

=
π(y,θ)

f (y)
f (y)

π(y,θ j 6=i)
=

π(θ |y)
π(θ j 6=i|y)

∝ π(θ |y) (2.6.2)

The final step obtains by noting that the joint posterior π(θ j 6=i|y) does not involve θi and can thus be
relegated to the normalization constant. What equation (2.6.2) shows is that the conditional posterior
π(θi|y,θ j 6=i) is simply proportional to the joint posterior π(θ |y).

definition 6.1: let π(θ |y) denote the joint posterior for θ = {θ1, · · · ,θn}. The conditional posterior
distribution π(θi|y,θ j 6=i) for θi obtains from:

π(θi|y,θ j 6=i) ∝ π(θ |y)

In other words, to obtain π(θi|y,θ j 6=i), one simply starts from the joint posterior π(θ |y) and relegate to
the normalization constant any term not involving θi. If this yields a known distribution, one can use the
gibbs sampling algorithm to sample directly from π(θi|y).

6.3 Gibbs sampling: an example

We now illustrate the use of the Gibbs sampling algorithm with the stock return example. Consider the
joint posterior (2.6.1). To use the Gibbs sampling algorithm, we need the conditional posteriors π(µ|y,σ)
and π(σ |y,µ).

Consider the conditional posterior π(µ|y,σ). Using definition 6.1, start from the joint posterior π(µ,σ |y)
given by (2.6.1) and relegate to the normalization constant any term not involving µ . Doing so yields:

π(µ|y,σ) ∝ exp

(
−1

2

n

∑
i=1

(yi−µ)2

σ

)
× exp

(
−1

2
(µ−m)2

v

)
(2.6.3)

This expression is similar to (1.3.23). Following the same approach and completing the squares eventually
yields:

π(µ|y,σ) ∝ exp
(
−1

2
(µ− m̄)2

v̄

)
(2.6.4)

with:

v̄ =
(

n
σ
+

1
v

)−1

m̄ = v̄

(
1
σ

n

∑
i=1

yi +
m
v

)
(2.6.5)

This is the kernel of a normal distribution with mean m̄ and variance v̄: π(µ|y,σ)∼ N(m̄, v̄).

Consider then the conditional posterior π(σ |y,µ). Start from the joint posterior π(µ,σ |y) given by (2.6.1)
and relegate to the normalization constant any term not involving σ to obtain:

π(σ |y,µ) ∝ σ
−n/2 exp

(
−1

2

n

∑
i=1

(yi−µ)2

σ

)
×σ

−α/2−1 exp
(
− δ

2σ

)
(2.6.6)
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Rearranging the terms in (2.6.6) directly yields:

π(σ |y,µ) ∝ σ
−ᾱ/2−1 exp

(
− δ̄

2σ

)
(2.6.7)

with:

ᾱ = α +n δ̄ = δ +
n

∑
i=1

(yi−µ)2 (2.6.8)

This is the kernel of an inverse Gamma distribution with shape ᾱ/2 and scale δ̄/2: π(σ |y,µ)∼ IG(ᾱ/2, δ̄/2).

From direct application of algorithm 6.1, the Gibbs sampler for the model obtains as:

algorithm 6.2: Gibbs sampling algorithm for the stock return model

1. set initial values µ(0) and σ (0). We use the sample estimates µ(0) = µ̂ and σ (0) = σ̂ .

2. at iteration j, draw:

µ( j) from π(µ|y,σ ( j−1))∼ N(m̄, v̄) with:

v̄ =
(

n
σ ( j−1) +

1
v

)−1

m̄ = v̄

(
1

σ ( j−1)

n

∑
i=1

yi +
m
v

)
3. at iteration j, draw:

σ ( j) from π(σ |y,µ( j))∼ IG(ᾱ/2, δ̄/2) with:

ᾱ = α +n δ̄ = δ +
n

∑
i=1

(yi−µ
( j))2

4. repeat to obtain 1000 iterations as burn-in sample and 2000 additional iterations for simulated
values.

The resulting simulated values along with the associated empirical distributions are displayed in Figure
6.1. The left panels show the simulations obtained for the Gibbs sampler (after discarding the burn-in
fraction), while the right panels show the resulting empirical distributions. These empirical distributions
look close to the ones obtained analytically with the hierarchical prior (compare for instance with Figure
4.2).

Figure 6.1 also highlights the cost from using the Gibbs sampling approach: clearly, the empirical distribu-
tions are only approximate and don’t exhibit the same degree of accuracy as their analytical counterparts.
One reason for that here is the small number of simulations: with only 1000 burn-in iterations and 2000
sample iterations the distribution can only be rough. By increasing both values a more accurate distribu-
tion could be obtained, at the cost of increased computational time.

In general, there is no objective rule to determine how many burn-in and sample iterations should be used.
More burn-in iterations improve convergence towards the invariant distribution, and more sample itera-
tions produce a finer empirical distribution. On the other hand, depending on the model, the computational
cost may become prohibitive. For most simple econometrics models, 1000 burn-in and 2000 sample it-
erations is typically enough, but more complex models may require many more iterations to obtain a
reasonably fine empirical distribution, using dozens of thousands iterations as burn-in and sample.

Once the empirical distributions are obtained, they can be used for general purposes. For instance, we can
use the empirical median to obtain point estimates and the 0.025 and 0.975 quantiles to compute the lower
and upper bounds of a 95% credibility interval. Doing so, we find for µ a point estimate of 15.69 and a
95% credibility interval of [14.65,16.64]. For σ , we obtain a point estimate of 6.65, and a 95% credibility
interval of [4.62,9.91].
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Figure 6.1: Gibbs sampling simulations and empirical distributions for µµµ and σσσ

6.4 Posterior predictive distribution with Gibbs sampling

Recall from definition 4.8 that the posterior predictive distribution is given by:

f (ŷ|y) =
∫

f (ŷ|y,θ) π(θ |y) dθ (2.6.9)

Whenever one has to rely on simulation methods, this definition cannot be applied analytically because
the exact form of the posterior π(θ |y) is unknown. Fortunately, it is straigthforward to adapt the definition
to the simulation framework. Observing (2.6.9), we notice that the posterior predictive distribution writes
as the product of the posterior π(θ |y), and the likelihood f (ŷ|y,θ) of future observations conditional on
data y and parameters θ .

This suggests a direct simulation method to obtain draws from f (ŷ|y). Suppose one can generate random
draws for θ from the posterior π(θ |y), and then use this θ value to compute ŷ from f (ŷ|y,θ). This
produces a draw of ŷ and θ from f (ŷ|y,θ) π(θ |y). Marginalizing, which simply implies to discard the θ

value then produces a draw from
∫

f (ŷ|y,θ) π(θ |y) dθ , i.e. from f (ŷ|y).

It is trivially simple to generate draws from π(θ |y) because we can just recycle the values obtained from
the Gibbs sampling algorithm. This way, a full Gibbs sampling algorithm for the posterior predictive
distribution can be obtained as:
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algorithm 6.3: Gibbs sampling algorithm for the posterior predictive distribution

1. at iteration j, draw θ
( j)
1 from π(θ1|y), θ

( j)
2 from π(θ2|y), · · · , and θ

( j)
n from π(θn|y). Simply recycle

the values θ
( j)
1 ,θ

( j)
2 , · · · ,θ ( j)

n obtained from the jth iteration of the Gibbs sampling algorithm.

2. given θ ( j), draw ŷ( j) from f (ŷ|y,θ ( j)).

3. marginalize, that is, discard θ ( j) and keep only ŷ( j).

4. repeat until the desired number of iterations is realised.

Running this algorithm, we obtain a sample of draws ŷ(1), ŷ(2), · · · which can be used to obtain an empirical
distribution.

Consider for example the predictive distribution for the stock return example with Gibbs sampling. From
(1.4.22), the likelihood function f (ŷ|y,µ,σ) for the predicted value ŷ is given by:

f (ŷ|y,µ,σ) = (2πσ)−1/2 exp
(
−1

2
(ŷ−µ)2

σ

)
(2.6.10)

In other words, the conditional distribution is normal with mean µ and variance σ : f (ŷ|y,µ,σ)∼N(µ,σ).
This gives the following algorithm:

algorithm 6.4: Gibbs sampling algorithm for the posterior predictive distribution, stock return
model

1. at iteration j, draw µ( j) from π(µ|y) and σ ( j) from π(σ |y). Recycle the values µ( j) and σ ( j)

obtained from the jth iteration of the Gibbs sampling algorithm.

2. given µ( j) and σ ( j), draw ŷ( j) from f (ŷ( j)|y,µ( j),σ ( j))∼ N(µ( j),σ ( j)).

3. marginalize, that is, discard µ( j) and σ ( j), and keep only ŷ( j).

4. repeat until 2000 iterations are realised.

The simulated values and the associated empirical distributions are displayed in Figure 6.2.
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Figure 6.2: Gibbs sampling simulations and empirical distributions for ŷ

The empirical predictions are quite close to those obtained analytically with the hierarchical prior (com-
pare with Figure 4.3). We can use the empirical distribution to obtain a point estimate of 15.81 and a 95%
prediction interval of [10.46,21.04].
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6.5 Marginal likelihood with Gibbs sampling

The marginal likelihood is normally calculated from definition 4.6 as f (y) =
∫

f (y|θ)π(θ)dθ . However,
the use of simulation methods implies that this quantity cannot be calculated, because the integral has no
analytical solution. In this case, Chib (1995) proposes an alternative approach. First, rearranging Bayes
rule 3.1 we obtain the identity:

f (y) =
f (y|θ)π(θ)

π(θ |y)
(2.6.11)

The numerator in (2.6.11) is known, since it is the product of the likelihood function f (y|θ) with the prior
π(θ |y). The normalization constant of the denominator however is unknown so that π(θ |y) cannot be
computed directly. The strategy consists in approximating the term from the values obtained from the
Gibbs sampling algorithm.

Consider a two-parameter model with θ = {θ1,θ2}. Using definition 2.12 of conditional densities, it
follows that π(θ1,θ2|y) = π(θ1|y,θ2)π(θ2|y). The first term is known: it is the conditional posterior
π(θ1|y,θ2), required for the Gibbs sampler. The second term is unknown, but can be reformulated as:

π(θ2|y) =
∫

π(θ2,θ1|y)dθ1 =
∫

π(θ2|θ1,y)π(θ1|y)dθ1 (2.6.12)

The integral cannot be calculated analytically, but it can be approximated with the so-called importance
sampling method: first sample J values θ

(1)
1 , · · · ,θ (J)

1 from π(θ1|y), then compute the approximation:

∫
π(θ2|θ1,y)π(θ1|y)dθ1 ≈

1
J

J

∑
j=1

π(θ2|θ ( j)
1 ,y) (2.6.13)

In practice, we use or course the J values generated by the Gibbs sampling algorithm. Substituting this
formula back in (2.6.11), we find that the two-parameter marginal likelihood can be approximated by:

f (y)≈ f (y|θ1,θ2)π(θ1,θ2)

π(θ1|y,θ2)× 1
J ∑

J
j=1 π(θ2|θ ( j)

1 ,y)
(2.6.14)

The expression can be evaluated at any value of θ1 and θ2, but in general points of high density such as the
median or the mode are chosen to optimize numerical accuracy. Denoting by θ ∗ = {θ ∗1 ,θ ∗2 } the chosen
high-density values, we eventually obtain:

f (y)≈ f (y|θ ∗1 ,θ ∗2 )π(θ ∗1 ,θ ∗2 )
π(θ ∗1 |y,θ ∗2 )×

1
J ∑

J
j=1 π(θ ∗2 |θ

( j)
1 ,y)

(2.6.15)

It is possible to switch θ ∗1 and θ ∗2 in (2.6.15), based on convenience. The methodology of Chib (1995) can
be extended to models with more than two parameters, but the procedure gets considerably more complex
and the computational cost may become prohibitive. In this case, simpler and more efficient alternatives
may be prefered (see section 7.4).

We now apply the method to the stock return example. Given θ = {µ,σ}, (2.6.15) becomes:

f (y)≈ f (y|µ∗,σ∗)π(µ∗,σ∗)
π(σ∗|y,µ∗)× 1

J ∑
J
j=1 π(µ∗|y,σ ( j))

(2.6.16)
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To evaluate (2.6.16), we use the likelihood function f (y|µ,σ) given by (1.3.19), the priors π(µ) and π(σ)
given by (1.3.22) and (1.4.1), and the conditional posteriors π(µ|y,σ) and π(σ |µ,y) given by (2.6.4) and
(2.6.7). It can then be shown (book 2, p. 19) that the marginal likelihood is approximated by:

f (y)≈ π
−n/2 δ α/2

δ̄ ᾱ/2

Γ(ᾱ/2)
Γ(α/2)

exp
(
−1

2
(µ−m)2

v

)
1
J ∑

J
j=1(1+ vn/σ)1/2 exp

(
−1

2
(µ−m̄)2

v̄

) (2.6.17)

The expression is evaluated at the high density points µ∗ and σ∗, taken to be the median of the Gibbs
sampler draws for the posterior. It ressembles much (1.4.17), except for the final term which represents
the Gibbs sampler approximation. Using (2.6.17), we find m(y) = −29.12. The value is consistent with
the value of −26.07 obtained in section 4.6. Jeffrey’s guidelines (Table 4.1) suggest decisive support in
favor of the hierarchical prior model: the independent prior model is not the one most supported by the
data.



CHAPTER 7

The Metropolis-Hastings algorithm

7.1 Metropolis-Hastings: motivation

Consider again the stock return example introduced in chapter 3, but assume we adopt a slightly different
formulation. The return is still modelled as a normal distribution with mean µ , but the variance is now
expressed as exp(λ ), with λ a real-valued parameter. The exponential guarantees that whatever the value
of λ , the variance will always be positive. In this model, the parameters of interest are thus θ = {µ,λ}.

Denoting by yi the stock return on year i, we have f (yi) ∼ N(µ,exp(λ )) and the probability density
function for each return is given by:

f (yi|µ,λ ) = (2π exp(λ ))−1/2 exp
(
−1

2
(yi−µ)2

exp(λ )

)
(2.7.1)

Using definition 3.4, the likelihood function then obtains as:

f (y|µ,λ ) = (2π exp(λ ))−n/2 exp

(
−1

2

n

∑
i=1

(yi−µ)2

exp(λ )

)
(2.7.2)

For the prior, we follow as usual definition 4.1 and assume independence between µ and λ so that
π(µ,λ ) = π(µ)π(λ ). The prior distribution for µ is unchanged: π(µ) ∼ N(m,v). it is thus given by
(1.3.22):

π(µ) = (2πv)−1/2 exp
(
−1

2
(µ−m)2

v

)
(2.7.3)

We then need a prior for λ . Because λ can take any real value, we choose again a normal distribution so
that π(λ )∼ N(g,z) with g the prior mean and z the prior variance. Following:

π(λ ) = (2πz)−1/2 exp
(
−1

2
(λ −g)2

z

)
(2.7.4)

Applying then Bayes rule 3.3, we obtain:

π(µ,λ |y) ∝ exp(λ )−n/2 exp

(
−1

2

n

∑
i=1

(yi−µ)2

exp(λ )

)
× exp

(
−1

2
(µ−m)2

v

)
× exp

(
−1

2
(λ −g)2

z

)
(2.7.5)

As usual, any multiplicative term not involving µ or λ has been relegated to the normalization constant.
This is a joint posterior distribution that cannot be marginalized analitycally. We first try to calculate the
conditional posterior distributions in order to use the Gibbs sampling algorithm. Consider the conditional
posterior π(µ|y,λ ). Using definition 6.1, we start from (2.7.5) and relegate to the normalization constant
any term not involving µ . This yields:

π(µ|y,λ ) ∝ exp

(
−1

2

n

∑
i=1

(yi−µ)2

exp(λ )

)
× exp

(
−1

2
(µ−m)2

v

)
(2.7.6)

53
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Rearranging and completing the squares eventually yields (book 2, p. 19):

π(µ|y,λ ) ∝ exp
(
−1

2
(µ− m̄)2

v̄

)
(2.7.7)

with:

v̄ =
(

n
exp(λ )

+
1
v

)−1

m̄ = v̄

(
1

exp(λ )

n

∑
i=1

yi +
m
v

)
(2.7.8)

This is the kernel of a normal distribution with mean m̄ and variance v̄: π(µ|y,λ )∼ N(m̄, v̄).

Consider now the conditional posterior π(λ |y,µ). Using definition 6.1, we start from (2.7.5) and relegate
to the normalization constant any term not involving λ . This yields:

π(λ |y,µ) ∝ exp(λ )−n/2 exp

(
−1

2

n

∑
i=1

(yi−µ)2

exp(λ )

)
× exp

(
−1

2
(λ −g)2

z

)
(2.7.9)

This is a complex expression in λ that cannot be rearranged into a known distribution and is thus
intractable. Even though we managed to calculate the conditional posterior, it is of unknown form and
thus cannot be used for the Gibbs sampling algorithm. In this case we need a more general approach,
which is given by the Metropolis-Hastings algorithm.

7.2 Metropolis-Hastings: the algorithm

Consider a model with n parameters so that θ = {θ1, · · · ,θn}. Assume that the conditional posteriors
π(θ1|y,θ2, · · · ,θn), · · · , π(θn|y,θ1 · · · ,θn−1) can be calculated, but that for at least one parameter (say θi)
this posterior is non-standard so that it is not possible to sample values directly from π(θi|y,θ1, · · · ,θn).
In this case, we can use the Metropolis-Hastings algortihm. Unlike the Gibbs sampling algorithm where
new values are obtained at each iteration, The Metropolis-Hastings algorithm will only generate candidate
values, and accept them with a certain probability. If the draw is rejected, the value inherited from the
previous iteration is retained.

Concretely, the Metropolis-Hastings first requires a function that produces a candidate value for the current
iteration, given the previous iteration value.

definition 7.1: let θ
( j)
i denote the value of θi at iteration j; a transition kernel is a probability density

function q(θ ( j−1)
i ,θ

( j)
i ) for θ

( j)
i with respect to the value θ

( j−1)
i .

Some common choices of transition kernels are the random walk kernel and the independence kernel. The
random walk kernel is of the form:

θ
( j)
i = θ

( j−1)
i + x (2.7.10)

where x is a random variable with known distribution, for instance π(x)∼ N(0,τ), with τ a user-specified
variance term defining the amplitude of the move. The independence kernel is defined as:

θ
( j)
i = x (2.7.11)

where x is a random variable with known distribution. In this case, at every iteration j a value θ
( j)
i is

sampled directly from the candidate distribution independently of the previous value θ
( j−1)
i , hence the

name independence kernel.
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Once a suitable transition kernel is chosen, it remains to determine the probability of acceptance of the
candidate.

definition 7.2: let π(θi|y,θ1, · · · ,θn) denote the conditional posterior for θi, and q(θ ( j−1)
i ,θ

( j)
i ) denote

the transition kernel; the probability of acceptance is the function α(θ
( j−1)
i ,θ

( j)
i ) given by:

α(θ
( j−1)
i ,θ

( j)
i ) = min

{
1,

π(θ
( j)
i |y,θ1, · · · ,θn) q(θ ( j)

i ,θ
( j−1)
i )

π(θ
( j−1)
i |y,θ1, · · · ,θn) q(θ ( j−1)

i ,θ
( j)
i )

}

Roughly speaking, the move is accepted with probability 1 if the density of the candidate value
π(θ

( j)
i |y,θ1, · · · ,θn) q(θ ( j)

i ,θ
( j−1)
i ) is higher than that inherited from the previous iteration

π(θ
( j−1)
i |y,θ1, · · · ,θn) q(θ ( j−1)

i ,θ
( j)
i ). Conversely, if the density of the candidate value is lower, the can-

didate will only be accepted with a probability smaller than 1.

The Metropolis-Hastings algorithm can then be summarized as follows:

algorithm 7.1: Metropolis-Hastings algorithm

1. set any initial values θ
(0)
i for θi.

2. at iteration j, obtain a candidate value θ̃i from q(θ ( j−1)
i ,θ

( j)
i ).

3. determine the probability of acceptance from α(θ
( j−1)
i ,θ

( j)
i ).

4. draw a uniform random number u from u∼U(0,1).

5. if u ≤ α(θ
( j−1)
i ,θ

( j)
i ), accept the candidate and set θ

( j)
i = θ̃i; else, reject the candidate and set

θ
( j)
i = θ

( j−1)
i .

6. repeat until the desired number of iterations is realised.

The choice of a transition kernel represents a key feature of the algorithm. The random walk and
independence kernels are simple, but not necessarily optimal choices. Ideally, a good kernel should
allow for sufficient variability in the value of θi between two iterations. This ensures that a large part
of the support of π(θi|y) will be covered by the iterations of the algorithm, which improves the mixing
between iterations and the quality of the empirical posterior. However, larger differences between θ

( j)
i and

θ
( j−1)
i typically imply larger differences between π(θ

( j)
i |y,θ1, · · · ,θn) and π(θ

( j−1)
i |y,θ1, · · · ,θn), which

increases the probability of rejection. Then some values may be repeated often, resulting in a poor em-
pirical distribution. The kernel must thus be chosen to generate the most efficient compromise between
these two aspects, and this is usually achieved by calibrating it to produce an acceptance rate somewhere
around 20-30%.

Whatever the acceptance rate, the Metropolis-Hastings algorithm is constructed to produce repeated
values. To avoid an empirical distribution that is too coarse it is customary to discard a fraction of
the draws, retaining only every n draws, where n is for instance 10 or 20. This technique is known as
thinning. It effectively solves the issue of repeated values but multiplies by n the total number of draws to
compute. Following, the computational cost of the Metropolis-Hastings algorithm increases dramatically.

Finally, it is worth noting that the Metropolis-Hastings algorithm can be integrated to a standard Gibbs
sampling framework. If θ1, · · · ,θn are the parameters of interest and only θi has a non-standard distribu-
tion, then θi can be simulated from Metropolis-Hastings while the other parameters are obtained from the
Gibbs sampling methodology.
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7.3 Metropolis-Hastings: an example

We now return to our stock return example. As shown by equation (2.7.7), the conditional posterior
π(µ|y,λ ) is standard: π(µ|y,λ ) ∼ N(m̄, v̄). It can thus be sampled directly from the Gibbs sampling
algorithm. On the other hand, the conditional posterior distribution π(µ,λ |y) given by (2.7.9) is non-
standard and requires the Metropolis-Hastings algorithm. First, define a transition kernel for λ . Here the
simple random walk kernel is chosen:

λ
( j) = λ

( j−1)+ x π(x)∼ N(0,τ) (2.7.12)

It follows that q(λ ( j−1),λ ( j)) ∼ N(λ ( j−1),τ). Also, (2.7.12) and the symmetry of π(x) around 0 implies
that q(λ ( j),λ ( j−1)) ∼ N(λ ( j),τ). Following, we conclude that q(λ ( j−1),λ ( j)) = q(λ ( j),λ ( j−1)), which
conveniently simplifies the probability of acceptance in defintion 7.2 to:

α(λ ( j−1),λ ( j)) = min

{
1,

π(λ ( j)|y,µ)
π(λ ( j−1)|y,µ)

}
(2.7.13)

Given (2.7.9), this directly yields (book 2, p. 22):

α(λ ( j−1),λ ( j))

= min

1,exp

1
2

 n(λ ( j−1)−λ ( j))+
[
exp(−λ ( j−1))− exp(−λ ( j))

]
∑

n
i=1(yi−µ)2

+
(λ ( j−1)−g)2− (λ ( j)−g)2

z

 (2.7.14)

Following, the algorithm for the model obtains as:

algorithm 7.2: Gibbs sampling/Metropolis-Hastings algorithm for the stock return model

1. set initial values µ(0) and λ (0); use the prior means µ(0) = m and λ (0) = g.

2. at iteration j:

draw µ( j) from π(µ|y,λ ( j−1))∼ N(m̄, v̄) with:

v̄ =
(

n
exp(λ )( j−1) +

1
v

)−1

m̄ = v̄

(
1

exp(λ ( j−1))

n

∑
i=1

yi +
m
v

)

3. at iteration j:

draw a candidate λ̃ from λ̃ = λ ( j−1)+ x , π(x)∼ N(0,τ)

4. at iteration j: obtain the acceptance probability α(λ ( j−1),λ ( j)) given by:

min

1,exp

 1
2

 n(λ ( j−1)−λ ( j))+
[
exp(−λ ( j−1))− exp(−λ ( j))

]
∑

n
i=1(yi−µ)2

+
(λ ( j−1)−g)2− (λ ( j)−g)2

z


5. at iteration j: draw a uniform random number u from u∼U(0,1).

if u≤ α(θ
( j−1)
i ,θ

( j)
i ), set θ

( j)
i = θ̃i; else, set θ

( j)
i = θ

( j−1)
i

6. repeat to obtain 1000 iterations as burn-in sample and 2000 additional iterations for simulated
values.
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It remains to calibrate the prior π(λ ) and the transition kernel q(λ ( j−1),λ ( j)). For π(λ ), we set g = 1.6
and z = 0.04. This way, the mean and variance of exp(λ ) match the prior mean of 5 and the prior variance
of 1 proposed for σ in section 4.3. For the random walk kernel q(λ ( j−1),λ ( j)) we set τ = 0.5, which
results in an acceptance rate of roughly 25%.

The algorithm is then run for 1000 burn-in iterations and 2000 samples, multiplied by 20 to retain only
every 20 simulated value. The resulting simulated values along with the associated empirical distributions
are displayed in Figure 7.1. The top panels show the simulations obtained for the Gibbs sampling step
for µ along with the resulting empirical distribution. These plots are quite consistent with the top plots in
Figure 6.1.

The bottom plots display the simulations and empirical distribution from the Metropolis-Hastings
algorithm for λ . The left panel shows the first 500 iterations of the algorithm, before trimming is op-
erated. The repeated values typical of the Metropolis-Hastings algorithm are quite apparent. The right
panel displays the empirical distribution obtained after posterior trimming. The distribution looks quite
smooth, demonstrating the gain in accuracy from trimming. It is consistent with the distribution in Figure
6.1 though slightly tighter, a feature resulting from the alternative formulation of the model.
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Figure 7.1: Gibbs sampling simulations and empirical distributions for µµµ and exp(((λλλ )))
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7.4 Marginal likelihood with Metropolis-Hastings

Section 6.5 introduced the Chib (1995) method to calculate the approximate marginal likelihood whenever
sampling from the Gibbs algorithm is available. Chib and Jeliazkov (2001) propose an adaptation of the
methodology to the Metropolis-Hastings algorithm. However, their approach is more complicated. Also,
for both approaches the computational cost may become prohibitive when the model involves more than
two parameters. For this reason, we introduce here the simpler and more general methodology of Gelfand
and Dey (1994). The approach is conceptually simple and relies on an harmonic mean approximation. It
only requires simulated draws from the marginal posteriors, regardless of the method used to produce
them.

Consider any probability density function g(θ). Then we have the following identity:

E
(

g(θ)
π(θ) f (y|θ)

∣∣∣∣y)=
1

f (y)
(2.7.15)

Indeed, it is immediate that:

E
(

g(θ)
f (y|θ) π(θ)

∣∣∣∣y)=
∫ g(θ)

f (y|θ) π(θ)
π(θ |y)dθ =

∫ g(θ)
f (y|θ) π(θ)

f (y|θ)π(θ)
f (y)

dθ =
1

f (y)

∫
g(θ)dθ =

1
f (y)

(2.7.16)

In practice, the expectation is unknown. However, a consistent estimate can be obtained from the Gibbs
sampler values, yielding the following approximation:

1
f (y)
≈ 1

J

J

∑
j=1

g(θ ( j))

f (y|θ ( j)) π(θ ( j))
(2.7.17)

In theory, any probability density function g(θ) can be used to compute the approximation. In practice,
the choice of g(θ) is very important for the accuracy of the approximation. Geweke (1999) propose to
use a truncated multivariate normal distribution: g(θ) ∼ N̄(θ̂ , Σ̂), where θ̂ and Σ̂ denote the empirical
posterior moments of the model parameters, calculated as:

θ̂ =
1
J

J

∑
j=1

θ
( j)

Σ̂ =
1
J

J

∑
j=1

(θ ( j)− θ̂)(θ ( j)− θ̂)′ (2.7.18)

The truncation is realised through the region Θ̂ = {θ : (θ − θ̂)′Σ̂−1(θ − θ̂) ≤ χ2
1−ω

(k)}, where χ2
1−ω

(k)
is the 1−ω quantile of the Chi-squared distribution with k degrees of freedom, for k the dimension of θ

and ω ∈ [0,1] some probability set by the statistician. We then obtain:

g(θ) = ω
−1(2π)−k/2|Σ̂|−1/2 exp

(
−1

2
(θ − θ̂)′Σ̂−1(θ − θ̂)

)
1(θ ∈ Θ̂) (2.7.19)

where 1(θ ∈ Θ̂) is the indicator function equal to 1 if θ is in Θ̂, and 0 otherwise. The function thus
truncates the extreme values of θ that may result in imprecise estimates of (2.7.17). Common choices for
ω are ω = 0.5, ω = 0.25 and ω = 0.1.

We now apply this method to the stock return example. Given θ = {µ,λ}, (2.7.17) becomes:

1
f (y)
≈ 1

J

J

∑
j=1

g(θ ( j))

f (y|µ( j),λ ( j)) π(µ( j)) π(λ ( j))
(2.7.20)
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Using the density (2.7.19) along with the likelihood function (2.7.2) and the priors (2.7.3) and (2.7.4), we
obtain (book 2, p. 23):

1
f (y)
≈ (ωJ)−1(2π)n/2|Σ̂|−1/2(vz)1/2

×
J

∑
j=1

1(θ ∈ Θ̂)× exp

(
1
2

[
nλ +

n

∑
i=1

(yi−µ)2

exp(λ )
+

(µ−m)2

v
+

(λ −g)2

z
− (θ − θ̂)′Σ̂−1(θ − θ̂)

])
(2.7.21)

Applying (2.7.21) with ω = 0.5, we find m(y) = −29.10. This value is virtually equal to the marginal
likelihood found in section 6.5 for the independent prior model. This indicates that the two models are
equally supported by the data and are, in fact, extremely similar.
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CHAPTER 8

Mathematical theory

This chapter introduces the mathematical foundations behind the Gibbs sampling and Metropolis-Hastings
methodologies. The chapter is technical and may safely be skipped if one is interested in methods only. A
good treatment of the subject can be found in Chib and Greenberg (1995) and Greenberg (2008), chapters
6-7. The presentation in this part follows more or less the same guidelines.

8.1 Markov Chains with finite state space

Assume our objective is to sample values from some target statistical distribution. For the time being we
keep things simple and assume that the distribution takes values in the finite set S = {s1, · · · ,sn}. Consider
for instance a random variable taking values in S = {1,2} with f (1) = 0.4 and f (2) = 0.6, as shown by
Figure 8.1.
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Figure 8.1: Probability mass function of the target distribution

To generate draws from this distribution, we will use Markov chains, a type of stochastic processes. Con-
sider for instance a discrete time stochastic process Xt which takes values in S = {s1, · · · ,sn}
(similarly to the target distribution), with t = 1,2, · · · . The stochastic process is then just a collection
of random variables X1,X2, · · · . The n possible values of Xt are called the states of the system, and we are
interested in describing the probabilities that the process moves from one state to another over a period
of time. Concretely, for si,s j ∈ S, we call the transition probabilities the set of values pi j such that
pi j = P(Xt+1 = s j|Xt = si).

61
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definition 8.1: a finite Markov chain is a stochastic process Xt with states S = {s1, · · · ,sn} and
transition probabilities pi j = P(Xt+1 = s j|Xt = si), for si,s j ∈ S.

Whenever pi j does not depend on t, we say that the Markov chain is homogenous. In this case, the
dynamics of the process can be conveniently summarized in a single matrix known as the transition matrix.

definition 8.2: the transition matrix is the n× n matrix P = {pi j} such that pi = (pi1, · · · , pin) is
row i of P, and ∑

n
j=1 pi j = 1.

For instance, consider the simple homogenous Markov chain Xt with states S = {1,2} and transition
matrix:

P =

(
2/3 1/3
2/9 7/9

)
(2.8.1)

P says that while in state 1 at period t, the probability to remain in state 1 at period t +1 is 2/3 while the
probability to move to state 2 is 1/3. Starting from state 2 at period t, the probability to move to state 1
at period t +1 is 2/9 while the probability to stay in state 2 is 7/9.

We now want to determine the probability p(2)i j to move from state si at period t to state s j at period t +2.
To do so, we first need to move from state si to some state sk during the first period, then move from state
sk to state s j during the second period, for any sk ∈ S. In other words, p(2)i j = ∑

n
k=1 pik pk j. It can be verified

that this implies P(2) = PP = P2. Working by induction, we then obtain that P(h) = Ph. For example:

P(3) = P3 =

(
0.452 0.548
0.364 0.636

)
(2.8.2)

P3 says that the probability to move from state 1 at period t to state 2 at period t + 3 is 0.548, while the
probability to return to state 1 is 0.452.

Typically, we are interested in P(h) when h gets large. Table 8.1 reports the transition probabilities for
different horizons h.

period (h) p(h)11 p(h)12 p(h)21 p(h)22

1 0.667 0.333 0.222 0.778
2 0.518 0.482 0.321 0.679
3 0.453 0.547 0.365 0.635
4 0.423 0.577 0.384 0.616
5 0.410 0.590 0.393 0.607
10 0.401 0.599 0.399 0.601
20 0.400 0.600 0.400 0.600

Table 8.1: Transition probabilities for P at different horizons

The matrix entries converge to some equilibrium values. In matrix form, we find that:

lim
h→+∞

P(h) =

(
0.400 0.600
0.400 0.600

)
(2.8.3)

We observe that the rows of the long-term matrix are similar: for h large enough, the probability of
being in state s j at period t + h is the same, whatever the state si we start at period t. This remarkable
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property constitutes the foundation of modern simulation methods, and is related to the notion of invariant
distribution.

definition 8.3: let P be a transition matrix; the probability vector π = (π1, · · · ,πn) is an invariant
distribution if:

π ′P = π

This definition says that if we select states at period t with probabilities π then move to period t + 1
according to P (left-hand side), the states at t + 1 will still be drawn according to π (right-hand side).
Following, π represents the state probabilities of the Markov chain at any time, hence the name invariant
distribution.

Let us compute the invariant distribution for the transition matrix P in (2.8.2). From definition 8.3, we
obtain:

(
π1 π2

)(2/3 1/3
2/9 7/9

)
=
(
π1 π2

)
(2.8.4)

The first row yields 2/3π1 + 2/9π2 = π1. Using then π2 = 1− π1 and solving for π1 yields π1 = 2/5,
and π2 = 3/5. Thus π = (0.4, 0.6) which corresponds to the rows of the long-term matrix in equation
(2.8.3). In other words, after a sufficient number of periods h, the Markov chain converges to the invariant
distribution π = (0.4, 0.6). Conveniently, this invariant distribution corresponds to the target distribution
depicted in Figure 8.1.

This suggests a natural procedure to generate values from a target finite distribution:

algorithm 8.1: distribution sampling with finite Markov chain

1. create a finite Markov chain with transition matrix P such that the invariant distribution corresponds
to the target distribution.

2. set any state as the initial state X0 of the Markov chain.

3. run the Markov chain for h periods; that is, determine X1, · · · ,Xh, randomly moving from period t
to period t +1 according to the transition matrix P.

4. for h large enough, the Markov chain has reached the invariant distribution; run the Markov chain
for an additional k periods, that is, determine Xh+1, · · · ,Xh+k according to P.

5. discard X1, · · · ,Xh; then Xh+1, · · · ,Xh+k are drawn from the invariant distribution, which corresponds
by construction to the target distribution.

Table 8.1 makes it clear why the initial values X1, · · · ,Xh must be discarded. For early periods the invariant
distribution is not yet reached, and the state of the Markov chain still depends significantly on the initial
state. It is thus important to run the chain for sufficiently long and to clear the influence of the initial state.

The use of algorithm 8.1 is illustrated in Figure 8.2. We use the transition matrix P defined in equation
(2.8.1) and run the Markov chain for 250 periods, setting the initial state as 1. The first 50 periods are
discarded as burn-in sample, which is sufficient to reach the invariant distribution of the chain, as shown
in Table 8.1. The empirical distribution resulting from the chain is quite close to the target distribution
shown in Figure 8.1. Because only 200 values are sampled, the empirical distribution does not replicate
exactly the target distribution, but the approximation could be made arbitrarily accurate by increasing the
number of observations generated.
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Figure 8.2: Distribution sampling with finite state Markov chain

Given a finite Markov chain and the associated transition matrix P, is it always possible to converge to an
invariant distribution? And if yes, is this invariant distribution unique? To answer these questions we first
need a few definitions, starting with the notion of communicating states.

definition 8.4: let Xt be a finite Markov chain with states S = {s1, · · · ,sn}; we say that state s j is
reachable from si, denoted by si→ s j, if there is some h≥ 1 with p(h)i j > 0.

If state si is reachable from s j and state s j is reachable from si, we say that states si and s j

communicate, denoted by si↔ s j.

Basically, two states communicate if from one, it is possible to reach the other at some point. For instance,
consider the Markov chain with transition matrix:

Q =

(
2/3 1/3

0 1

)
(2.8.5)

We can see that states 1 and 2 don’t communicate: if we ever reach state 2, we will remain in it forever
and so state 1 is not reachable from state 2. An important class of Markov chains is that where all the
states communicate.

definition 8.5: a Markov chain is irreducible if all states communicate.

Another important property of Markov chains is periodicity.

definition 8.6: let Xt be a finite Markov chain with states S = {s1, · · · ,sn}; state s j ∈ S is periodic
of period d if there exists some integer d ≥ 1 such that p(h)j j > 0 whenever h is a multiple of d, and

p(h)j j = 0 otherwise. The chain is aperiodic if the period is 1 for all the states.

Simply speaking, a state has period d if it takes a multiple of d periods to return to it. Consider for instance
the Markov chain with transition matrix:

R =

(
2/3 1/3

1 0

)
(2.8.6)

Whenever the chain is in state 2, it can only move to state 1. Returning to state 2 thus takes at least two
periods: one to move to state 1, and one to reach state 2 again. State 2 has thus a period of 2, and the chain
is not aperiodic.
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It is now possible to state the main result of this section:

theorem 8.1: let Xt be an irreducible and aperiodic Markov chain over the finite states S = {s1, · · · ,sn};
then there exists a unique probability distribution π such that π ′P = π ′; also:

|p(h)i j −π j| ≤ δ h/v for all i, j = 1, · · · ,n

with 0< δ < 1 and v some positive integer.

This theorem lies at the basis of Monte Carlo Markov Chain (MCMC) methods. In a finite state space,
it says that as long as we can define a Markov chain that is irreducible and aperiodic, there exists for
sure a unique invariant distribution for the chain. Also, for sufficiently large h, the chain converges to the
invariant distribution π at some geometric rate h/v.

Understanding why the Markov chain has to be irreducible and aperiodic is straightforward. If the chain
is not irreducible, then the exist at least two states si and s j that don’t communicate. In this case it is not
possible to reach an invariant distribution since reaching state si precludes state s j to be ever joined later
on. If the chain is not aperiodic, there exists at least one state s j such that p(h)j j > 0 whenever h is a multiple

of d, and p(h)j j = 0 otherwise. Thus by definition we cannot have p(h)j j = π j for all periods.

8.2 Markov Chains with countable state space

Markov chains with finite states prove often too restrictive for empirical applications. As a first general-
ization we consider Markov chains with countable state spaces. Such Markov chain take an infinite, but
still countable number of values. A classical example is the random walk process with states S = Z, the
set of integers, and transition probabilities given by:

pi j =


p, if j = i+1
q, if j = i
r, if j = i−1

p+q+ r = 1 (2.8.7)

Whenever the state space S is countable, irreducibility and aperiodicity are not sufficient anymore to
guarantee the existence of a unique invariant distribution. To see this, consider Figure 8.3.
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Figure 8.3: Examples of random walk processes



66 CHAPTER 8. MATHEMATICAL THEORY

The two processes are obtained from the Markov chain (2.8.7). The process on the left obtains from
p = q = r = 1/3 while that on the right is generated with p = 0.4, q = 0.25, r = 0.35. The right process
is an example of a biased Markov chain where the probability to move up larger than the probability to
move down.

Clearly, both processes are irreducible and aperiodic. The process on the left looks stationary. However,
the right process is drifting off to infinity due to its bias. Therefore in the long run the probability to reach
any finite value si tends to 0: p(h)i j → 0 for all i, j. Because the probabilities of reaching finite states decline
over time, the process cannot converge to an invariant distribution where the probability to obtain any
state si remains constant over periods.

We thus need a stronger concept, which is the notion of recurrence. This first requires a few definitions.

definition 8.7: let Xt be a Markov chain with countable states S = {s1,s2, · · ·}, and let X0 = si; the
return time Ti is the number of periods for the chain to first return to si:

Ti = min{t ≥ 1 : Xh = si}

The return time Ti is a random variable. For instance, for the Markov chain defined in equation (2.8.7), we
have Ti = 1 with probability q, Ti = 2 with probability 2pr (the chain moves up then down, or the converse),
and so on. Formally, we denote the probability of return time at period h by f (h)i =P(Ti = h|X0 = si). From
this, the probability of ever returning to si is given by:

fi =
∞

∑
h=1

f (h)i (2.8.8)

We can then define the concept of recurrence.

definition 8.8: let fi denote the probability of returning to si; the state si is recurrent if fi = 1;
otherwise, si is transient if fi < 1.

Basically, a state is recurrent if the chain returns to it at some point with probability 1. Certainly, a
chain cannot reach an invariant distribution if some of its states are transient. Recurrence, however, is not
sufficient to guarantee a unique invariant distribution. For a state si, define the mean return time mi as:

mi = E(Ti|X0 = si) =
∞

∑
h=1

h f (h)i (2.8.9)

We then define positive recurrence as:

definition 8.9: let mi denote the mean return time to si; the state si is positive recurrent if mi < ∞ ;
otherwise, si is null recurrent if mi = ∞.

A state is positive recurrent if returning to it takes on average a finite number of periods only. It is null
recurrent if returning to it happens with probability 1, but takes on average an infinite number of periods.
With these elements, it is possible to define the conditions under which a unique invariant distribution is
guaranteed.
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theorem 8.2: let Xt be an irreducible Markov chain with countable states S = {s1,s2, · · ·}; then:
1. if all states are recurrent, they are either all positive recurrent or all null recurrent.
2. there exists an invariant distribution if and only if all states are positive recurrent; in this case, the
invariant distribution π = (π1,π2, · · ·) is unique and given by:
πi = 1/mi for all si ∈ S

3. If the states are positive recurrent, then πi = lim
h→+∞

1/h
h

∑
t=1

1(Xt = si)

The first part of the theorem states that an irreducible Markov chain will either return to all states within
finite mean times, or to none of them. The second part says that the existence of an invariant distribution
is equivalent to all the states being positive recurrent, in which case the invariant distribution is the inverse
of the mean return time for each state. The final part provides a way to recover the distribution from the
empirical frequency of each state si, provided the number of observations h is sufficiently large.

Theorem 8.2 provides a measure of convergence for irreducible Markov chains in time average. To obtain
instead convergence from transition probabilities, in the sense that π j = lim

h→+∞

p(h)i j and regardless of the

initial state si, then the further condition of aperiodicity is needed on the chain. We have the following
theorem:

theorem 8.3: let Xt be an irreducible Markov chain with invariant distribution π = (π1,π2, · · ·); then
π j = lim

h→+∞

p(h)i j if and only if the chain is aperiodic.

To illustrate the results obtained in this section, consider a variant of the random walk Markov chain
(2.8.7). We restrict the states to be the natural numbers S = {1,2,3, · · ·} and define the transition matrix
as:

P =


p+q r 0 0 0 · · ·

p q r 0 0 · · ·
0 p q r 0 · · ·
0 0 p q r · · ·
...

...
...

...
...

. . .

 (2.8.10)

In state 1, the chain remains still with a probability of p+q, and moves up to 2 with a probability of r. In
any other state, the chain remains still with a probability of q, moves up with a probability of r, and moves
down with a probability of p. If it exists, the invariant distribution of the chain is given by (book 2, p. 25):

π1 = 1− r
p

, π2 =

(
r
p

)
π1 , π3 =

(
r
p

)2

π1 , π4 =

(
r
p

)3

π1 · · · (2.8.11)

It is apparent from (2.8.11) that the invariant distribution exists if and only if p > r, in which case the
probabilities π j decline geometrically and all the states are positive recurrent from theorem 8.2. Also,
the chain is clearly aperiodic so theorem 8.3 applies and π j = lim

h→+∞

p(h)i j : whatever the initial state of the

chain, we converge to π j for sufficiently large h.

So, assume we want to sample values from the invariant distribution (2.8.11), using algorithm 8.1. We set
p = 0.5 and q = r = 0.25, which yields π1 = 0.5,π2 = 0.25,π3 = 0.125, and so on. The chain is started at
state 1 and run for 7000 periods, the first 2000 of which are discarded as burn-in sample. The simulated
values and empirical distribution are displayed in Figure 8.4.
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Figure 8.4: Distribution sampling with countable state Markov chain

The empirical distribution replicates the invariant distribution quite closely. The good fit is explained both
by the large fraction of burn-in sample (2000 iterations) which permits convergence to the invariant distri-
bution, and by the large number of iterations post transient sample, which from theorem 8.2.3 guarantees
the convergence in mean to the true values.

8.3 Markov Chains with continuous state space

After finite and countable state spaces, we eventually discuss continuous state spaces. In this case, the
Markov chain takes real values, and the set of possible states is S = R or some subset of it. Because the
states are uncountable, it is not possible to define a transition matrix. Also, defining pi j as the transition
probability between states si and s j is not sensitive anymore since the probability of any state is 0 on a
continuous space.

Instead we use the notion of transition density or transition kernel q(x,y). This is not the probability of
moving from state y to state x. Rather, it represents the conditional density function f (Xt+1 = y|Xt = x).
Then if the current state is Xt = x, the probability of moving to some subset A of S is given by:

P(x,A) = P(Xt+1 ∈ A|Xt = x) =
∫

A
q(x,y)dy (2.8.12)

The h-steps ahead transition kernel q(h)(x,y) is given by:

q(h)(x,y) =
∫

S
q(h−1)(x,z) q(z,y) dz (2.8.13)

This says that in order to move from x to y after h periods, we first need to move from x to any state z∈ S in
h−1 periods, then move from z to x over the last period. We then integrate over all possible intermediate
states z to obtain the density q(h)(x,y). Following, we define the probability of moving to some subset A
of S in h steps as P(h)(x,A) =

∫
A q(h)(x,y)dy.

The continuous state space analogue of the invariant distribution is given by the notion of invariant density.

definition 8.10: let Xt be a Markov chain with continuous state space S and transition kernel q(x,y);
an invariant density is a probability density function π(y) which satisfies:

π(y) =
∫

S
π(x)q(x,y)dx
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The notion of aperiodicty in continuous spaces is unchanged and still given by definition 8.6. Irreducibility
on the other hand must be re-defined.

definition 8.11: let Xt be a Markov chain with continuous state space S and transition kernel q(x,y),
and let π(x) be some density function on S; the chain is πππ-irreducible if for each subset A of S with
π(A)> 0, there exists an h such that P(h)(x,A)> 0.

π-irreducibility is the continuous-space analogue of definitions 8.4 and 8.5 of irreducibility for countable
state spaces. Finally, we need to define a continuous-space equivalent of the notion of recurrence.

definition 8.12: let Xt be a π-irreducible Markov chain.
The chain is recurrent if for each subset A of S with π(A)> 0:
P(h)(x,A) i.o. > 0 for all x

P(h)(x,A) i.o.= 1 for π-almost all x

The chain is Harris recurrent if P(h)(x,A) i.o.= 1 for all x

where i.o stands for “infinitely often”. In short, the chain is recurrent if it returns to any subset A of S
infinitely often with probability 1 for almost all initial states x. It is Harris recurrent if instead the condition
holds for all x.

We then have the following theorem.

theorem 8.4: let Xt be a Markov chain with invariant distribution π , and suppose that Xt is π-irreducible.
Then Xt is positive recurrent and π is the unique invariant distribution of Xt .
If Xt is also aperiodic, then for π-almost every x:

∥∥∥P(h)(x,A)−π(A)
∥∥∥→ 0,

with ‖.‖ the total variation norm1.
If Xt is Harris recurrent, then the convergence occurs for all x.

Theorem 8.4 constitutes the basis of modern Monte Carlo Markov Chain (MCMC) methods. It provides
a simple procedure to sample from a target distribution. First, define a transition kernel that is irre-
ducible, aperiodic, positive recurrent and whose invariant distribution corresponds to the target distribu-
tion.
Second, start the kernel from any state and run it for long enough to eventually sample values from
the target distribution.

To illustrate the use of theorem 8.4, assume we want to sample values from a normal distribution with
mean µ and variance σ : π(y)∼ N(µ,σ). To do so, we use an autoregressive transition kernel, defined as:

yt = c+ γyt−1 + ε ε ∼ N(0,s) (2.8.14)

We claim that defining c = µ(1− γ) and s = (1− γ2)σ , the unique invariant distribution of the transition
kernel (2.8.14) is the target distribution π(y)∼ N(µ,σ). To see this, start from definition 8.10:

π(yt−1) q(yt−1,yt) dyt−1

∝

∫
exp
(
−1

2
(yt−1−µ)2

σ

)
exp
(
−1

2
(yt − c− γyt−1)

2

s

)
(2.8.15)

1The total variation norm between any two probability measures π1 and π2 is defined as:
‖π1(A)−π2(A)‖= supA|π1(A)−π2(A)|, for some set A ∈ S.
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After some manipulations, this rewrites as (book 2, p. 26):

= exp
(
−1

2
(yt −µ)2

σ

)∫
exp
(
−1

2
(yt−1− c− γyt)

2

s

)
dyt−1

∝ exp
(
−1

2
(yt −µ)2

σ

)
(2.8.16)

And this is indeed recognised as the density function of the target distribution π(yt).

The Markov chain defined by the transition kernel (2.8.14) is clearly π-irreducible, Harris recurrent and
aperiodic. Thus from theorem 8.4 we known that it will converge to the invariant distribution π , provided
it is run for a sufficient number of periods.

The target distribution is parameterized with µ = 5 and σ = 2. The kernel uses γ = 0.8, and the chain is
run for 3000 burn-in iterations and an additional 5000 draws. The simulations and the resulting empirical
distribution are shown in Figure 8.5.

0 1000 2000 3000 4000 5000

period

0

5

10

(a) Markov chain values Xt

0 2 4 6 8 10

x

0

0.02

0.04

0.06

f 
(x

)

(b) Empirical distribution of X

Figure 8.5: Distribution sampling with continuous state Markov chain

8.4 Application to Gibbs sampling

In this brief section, we demonstrate how the results obtained in the preceding sections justify the use of
the Gibbs sampling algorithm. To keep the presentation simple, the analysis is restricted to the case of
two parameters only, but the conclusions are general and extend to the case of n parameters.

Thus, consider a model with two parameters so that θ = {θ1,θ2}. Our objective is to sample values from
the posterior distribution π(θ |y) = π(θ1,θ2|y) which constitutes the target distribution. Marginalisation is
not possible, but the conditional posteriors π(θ1|y,θ2) and π(θ2|y,θ1) are standard, so one can easily draw
values from them. We use them to define a transition kernel q(θ (n−1),θ (n)) that samples alternatively from
both conditional posteriors:

q(θ (n−1),θ (n)) = π(θ
(n)
1 |θ

(n−1)
2 ) π(θ

(n)
2 |θ

(n)
1 ) (2.8.17)

We have dropped y in the conditionning for readibility. We now show that the target distribution π(θ1,θ2)
corresponds to the invariant distribution of the transition kernel (2.8.17).
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Using definition 8.10, we obtain:∫
q(θ (n−1),θ (n)) π(θ (n−1))dθ

(n−1)

=
∫

π(θ
(n)
1 |θ

(n−1)
2 ) π(θ

(n)
2 |θ

(n)
1 ) π(θ

(n−1)
1 ,θ

(n−1)
2 )dθ

(n−1)
1 dθ

(n−1)
2

= π(θ
(n)
2 |θ

(n)
1 )

∫
π(θ

(n)
1 |θ

(n−1)
2 ) π(θ

(n−1)
2 )dθ

(n−1)
2

= π(θ
(n)
2 |θ

(n)
1 ) π(θ

(n)
1 )

= π(θ
(n)
1 ,θ

(n)
2 ) (2.8.18)

Hence, the target distribution π(θ
(n)
1 ,θ

(n)
2 ) is the invariant distribution of the Gibbs sampler transition

kernel q(θ (n−1),θ (n)) = π(θ
(n)
1 |θ

(n−1)
2 ) π(θ

(n)
2 |θ

(n)
1 ). This represents a necessary but not sufficient condi-

tion to ensure the convergence of the kernel to the invariant distribution. Verifying that the conditions for
convergence are satisfied may be difficult in general, but the following result establishes that the Gibbs
sampling algorithm will work under mild assumptions.

theorem 8.5: let Xt be a Markov chain with invariant distribution π , and suppose that Xt is π-irreducible.
If P(x,A) is absolutely continuous with respect to π for all x, then Xt is Harris recurrent.

The fact that the Gibbs sampling transition kernel can be Harris recurrent under mild conditions directly
implies convergence to the invariant distribution, from theorem 8.4.

8.5 Application to Metropolis-Hastings

Unlike the Gibbs sampling algorithm, the Metropolis-Hastings algorithm does not require that we can
sample values directly from the conditional posterior distributions. It uses a more general approach, built
on the concept of reversible kernel. A transition kernel q(x,y) is reversible if it satisfies:

π(x) q(x,y) = π(y) q(y,x) (2.8.19)

We first show that if the transition kernel q(x,y) is reversible, then π(x) represents the invariant density
for q(x,y). From definition 8.10, we have:∫

π(x)q(x,y)dx =
∫

π(y)q(y,x)dx = π(y)
∫

q(y,x)dx = π(y) (2.8.20)

So if we can find a reversible kernel q(x,y), it becomes easy to sample values from the target distribution
π(x). In general however a transition kernel may not be reversible. In this case, we may obtain for instance
that fome some x and y:

π(x) q(x,y) > π(y) q(y,x) (2.8.21)

In this case, loosely speaking, the process moves from x to y too often, and from y to x too rarely. The
trick consists in turning (2.8.21) into a reversible kernel by reducing the probability to move from x to y.
To do so, we use a function α(x,y)< 1 that represents the probability of move from x to y. If the move is
not made, the process remains at x. With this, we obtain the reversible kernel:

π(x) q(x,y) α(x,y) = π(y) q(y,x) α(y,x) (2.8.22)
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Since the process moves from y to x too infrequently, the probability of move α(y,x) should be set to 1.
But then this defines α(x,y) since (2.8.22) directly implies:

α(x,y) =
π(y) q(y,x)
π(x) q(x,y)

(2.8.23)

Conveniently, computing α(x,y) does not require the normalization constant of π(.) since it appears both
in the numerator and denominator.

For some values x and y the inequality (2.8.21) may be reversed so that π(x) q(x,y) < π(y) q(y,x). In
this case the process moves too rarely from x to y and we want α(x,y) to be 1 to compensate. Following,
(2.8.23) becomes:

α(x,y) = min
{

1,
π(y) q(y,x)
π(x) q(x,y)

}
(2.8.24)

Sampling from the target distribution π(x) can then be done easily by defining a transition kernel q(x,y)
and adopting the probability of move (2.8.24). The conditions for converge specified in theorems 8.4 and
8.5 still apply.
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CHAPTER 9

The linear regression model

This chapter introduces the most basic econometrics model: the linear regression. It focuses on its formu-
lation and on the Bayesian estimates obtained under different assumptions. The associated applications
(predictions and model selection) will be the object of chapter 10.

9.1 Formulation and maximum likelihood estimate

The linear regression model studies the relation between an endogenous variable y and a group of k
exogenous variables x1,x2, · · · ,xk that explain it. To estimate the model, a sample of n observations is
collected. The model then takes the form:

yi = β1xi1 +β2xi2 + · · ·+βkxik + εi εi ∼ N(0,σ) i = 1, · · · ,n (3.9.1)

It is convenient to rewrite the model in compact form as:

y = Xβ + ε ε ∼ N(0,σ In) (3.9.2)

with:

y =


y1
y2
...

yn

 X =


x11 x12 · · · x1k
x21 x22 · · · x2k
...

...
. . .

...
xn1 xn2 · · · xnk

 β =


β1
β2
...

βk

 ε =


ε1
ε2
...

εn

 (3.9.3)

The parameters of interest to estimate are then θ = {β ,σ}. Consider for now a frequentist approach of the
model. Following section 3.1, we first need to set the likelihood function f (y|β ,σ) to obtain maximum
likelihood estimates of β and σ . It follows immediately from equation (3.9.2) that y ∼ N(Xβ ,σ In). The
likelihood function is then given by:

f (y|β ,σ) = (2πσ)−n/2 exp
(
−1

2
(y−Xβ )′(y−Xβ )

σ

)
(3.9.4)

Following definition 3.5, the maximum likelihood estimates β̂ and σ̂ are obtained by maximizing the
log-likelihood function:

β̂ , σ̂ = argmax
β ,σ

log( f (y|β ,σ)) (3.9.5)

The log-likelihood function is given by:

log( f (y|β ,σ)) =−n
2

log(2π)− n
2

log(σ)− 1
2
(y−Xβ )′(y−Xβ )

σ
(3.9.6)

The maximum is found by solving simultaneously for
∂ log( f (y|β ,σ))

∂β
= 0 and

∂ log( f (y|β ,σ))

∂σ
= 0.

75
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It can be shown (book 2, p. 31) that the resulting estimates are:

β̂ = (X ′X)−1X ′y σ̂ =
(y−X β̂ )′(y−X β̂ )

n
(3.9.7)

The maximum likelihood estimate β̂ is therefore equivalent to the standard OLS estimate. The estimate
σ̂ is also similar to the OLS estimate but is biased (the divisor is n instead of n− k).

A confidence interval at the α confidence level for any individual coefficient βi can be obtained from
(see for instance Greene (2003), chapter 4):

β̂i±Tα/2 si si =
√

σ̂Sii S = (X ′X)−1 d f = n− k (3.9.8)

9.2 A first Bayesian estimate

The simplest Bayesian approach consists in treating σ as known so that only β remains to estimate. To do
so, we define σ = σ̂ , the maximum likelihood estimate obtained in (3.9.7). In this case, we are left with
θ = {β}. From Bayes rule 3.3, the posterior π(β |y) is given by:

π(β |y) ∝ f (y|β )π(β ) (3.9.9)

The likelihood function f (y|β ) is given by (3.9.4). Consider then the prior distribution for β . Because the
coefficients can take any real value, the multivariate normal distribution represents a good choice. We thus
set the prior to be multivariate normal with prior mean b and prior variance V :
π(β )∼ N(b,V ). Following:

π(β ) = (2π)−k/2|V |−1/2 exp
(
−1

2
(β −b)′V−1(β −b)

)
(3.9.10)

Following, Bayes rule (3.9.9) becomes:

π(β |y) ∝ exp
(
−1

2
(y−Xβ )′(y−Xβ )

σ

)
× exp

(
−1

2
(β −b)′V−1(β −b)

)
(3.9.11)

Notice the similarity between the linear regression and the stock return model developed in section 3.4:
both models combine a normal likelihood function with a normal prior, the only difference being the
multivariate nature of the regression. We basically follow the same estimation procedure, and in particular
we apply again the “completing the squares” methodology. The details are provided once more due to the
multivariate nature of the model, but they are essentially the same as in the scalar case. First develop and
group the terms in (3.9.11) to obtain (book 2, p. 31):

π(β |y) ∝ exp
(
−1

2
[
β
′(V−1 +σ

−1X ′X)β −2β
′(V−1b+σ

−1X ′y)+b′V−1b+ y′σ−1y
])

(3.9.12)

Now add terms in (3.9.12) to make the expression factorable into a single quadratic form.

π(β |y) ∝ exp
(
−1

2

[
β ′(V−1 +σ−1X ′X)β −2β ′V̄−1V̄ (V−1b+σ−1X ′y)
+b′V−1b+ y′σ−1y+ b̄′V̄−1b̄− b̄′V̄−1b̄

])
(3.9.13)

Define:

V̄ = (V−1 +σ
−1X ′X)−1 b̄ = V̄ (V−1b+σ

−1X ′y) (3.9.14)

Then (3.9.13) rewrites:

π(β |y) ∝ exp
(
−1

2
(β ′V̄−1

β −2β
′V̄−1b̄+ b̄′V̄−1b̄+b′V−1b+ y′σ−1y− b̄′V̄−1b̄)

)
(3.9.15)
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Factoring the first three terms into a single quadratic form and separating the remaining terms yields:

π(β |y) ∝ exp
(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
× exp

(
−1

2
(b′V−1b+ y′σ−1y− b̄′V̄−1b̄)

)
(3.9.16)

Noting that the second term does not involve β , relegate it to the normalization constant:

π(β |y) ∝ exp
(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
(3.9.17)

This is the kernel of a multivariate normal distribution with mean b̄ and variance V̄ : π(β |y) = N(b̄,V̄ ).

9.3 A hierarchical prior

This section considers a first model where both β and σ are estimated, so that θ = {β ,σ}. Following,
Bayes rule is given by:

π(β ,σ |y) ∝ f (y|β ,σ)π(β ,σ) (3.9.18)

We set a hierarchical prior by assuming that the prior distribution of β depends on the residual variance
σ . Following, we have π(β ,σ) = π(β |σ)π(σ) and Bayes rule (3.9.18) rewrites:

π(β ,σ |y) ∝ f (y|β ,σ)π(β |σ)π(σ) (3.9.19)

The likelihood function f (y|β ,σ) for the model is still given by (3.9.4). For β , the hierarchical prior is set
as a multivariate normal distribution with variance proportional to the residual variance σ :
π(β |σ)∼ N(b,σV ). Following:

π(β |σ) = (2π)−k/2|σV |−1/2 exp
(
−1

2
(β −b)′(σV )−1(β −b)

)
(3.9.20)

For σ finally we use an inverse gamma prior with shape α/2 and scale δ/2: π(σ) ∼ IG(α/2,δ/2), so
that:

π(σ) =
(δ/2)α/2

Γ(α/2)
σ
−α/2−1 exp

(
− δ

2σ

)
(3.9.21)

Notice that this model is essentially the same as the hierarchical model developed in section 4.2 for the
stock return example. We thus follow similar procedures,and obtain similar results. From Bayes rule
(3.9.19), we obtain:

π(β ,σ |y) ∝ σ
−n/2 exp

(
−1

2
(y−Xβ )′(y−Xβ )

σ

)
×|σV |−1/2 exp

(
−1

2
(β −b)′(σV )−1(β −b)

)
×σ

−α/2−1 exp
(
− δ

2σ

)
(3.9.22)

Grouping the terms and completing the squares, this joint posterior becomes (book 2, p. 32):

π(β ,σ |y) ∝ σ
−k/2 exp

(
−1

2
(β − b̄)′(σV̄ )−1(β − b̄)

)
×σ

−ᾱ/2−1 exp
(
− δ̄

2σ

)
(3.9.23)

with:

V̄ = (V−1 +X ′X)−1 b̄ = V̄ (V−1b+X ′y) ᾱ = α +n δ̄ = δ + y′y+b′V−1b− b̄′V̄−1b̄ (3.9.24)
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We recognize in the posterior the product of two kernels: a multivariate normal density, and an inverse
gamma density. We are interested in the marginal posteriors π(β |y) and π(σ |y), and to do this we use
definition 4.3. Marginalisation is easy for σ since β only appears in the first kernel, hence:

π(σ |y) =
∫

π(β ,σ |y)dβ ∝ σ
−ᾱ/2−1 exp

(
− δ̄

2σ

) ∫
σ
−k/2 exp

(
−1

2
(β − b̄)′(σV̄ )−1(β − b̄)

)
dβ

∝ σ
−ᾱ/2−1 exp

(
− δ̄

2σ

)
(3.9.25)

This is the kernel of an inverse gamma distribution with shape ᾱ/2 and scale δ̄/2: π(σ |y)∼ IG(ᾱ, δ̄ ).

The marginal posterior π(β |y) is less direct. As σ appears in all the terms of (3.9.23), we group them and
integrate:

π(β |y) =
∫

π(β ,σ |y)dσ ∝

∫
σ
−(ᾱ+k)/2−1 exp

(
− δ̄ +(β − b̄)′V̄−1(β − b̄)

2σ

)
dσ (3.9.26)

This is the kernel of an inverse Gamma distribution with shape (ᾱ + k)/2 and scale
(δ̄ + (β − b̄)′V̄−1(β − b̄)/2, and integration yields the reciprocal of the normalization constant of the
distribution. Hence:

π(β |y) ∝ Γ

(
ᾱ + k

2

)(
δ̄ +(β − b̄)′V̄−1(β − b̄)

2

)− ᾱ+k
2

(3.9.27)

After some manipulations, it can be shown (book 2, p. 33) that this reformulates as:

π(β |y) ∝

(
1+

1
ᾱ
(β − b̄)′(δ̄V̄/ᾱ)−1(β − b̄)

)− ᾱ+k
2

(3.9.28)

This is the kernel of a multivariate Student distribution with location b̄, scale δ̄V̄/ᾱ and degrees of freedom
ᾱ: π(β |y)∼ T (b̄, δ̄V̄/ᾱ, ᾱ).

9.4 An independent prior

This section introduces a second model where both β and σ are estimated. This time however β and σ are
treated as independent parameters. Given that θ = {β ,σ}, Bayes rule is still given by (3.9.18). However,
assuming independence yields π(β ,σ) = π(β ) π(σ) so that:

π(β ,σ |y) ∝ f (y|β ,σ)π(β )π(σ) (3.9.29)

Using the likelihood function (3.9.4) and the priors (3.9.10) and (3.9.21), the joint posterior obtains as:

π(β ,σ |y) ∝ σ
−n/2 exp

(
−1

2
(y−Xβ )′(y−Xβ )

σ

)
× exp

(
−1

2
(β −b)′V−1(β −b)

)
×σ

−α/2−1 exp
(
− δ

2σ

)
(3.9.30)

Again, any term not involving β or σ has been relegated to the normalization constant. Analytical
marginalization from integration is not possible with this joint posterior. The situation is similar to the
stock return example developed in section 6.1, and the solution also involves use of the Gibbs sampling
algorithm. Obtain first the conditional posterior π(β |y,σ). From definition 6.1, this is done by starting
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from the joint posterior (3.9.30) and relegating to the normalization constant any multiplicative term not
involving β , yielding:

π(β |y,σ) ∝ exp
(
−1

2
(y−Xβ )′(y−Xβ )

σ

)
× exp

(
−1

2
(β −b)′V−1(β −b)

)
(3.9.31)

This is similar to (3.9.11), so rearranging and completing the squares the same way eventually results in:

π(β |y,σ) ∝ exp
(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
(3.9.32)

with:

V̄ = (V−1 +σ
−1X ′X)−1 b̄ = V̄ (V−1b+σ

−1X ′y) (3.9.33)

This is the kernel of a multivariate normal distribution with mean b̄ and variance V̄ : π(β |y,σ)∼ N(b̄,V̄ ).
Consider then the conditional posterior π(σ |y,β ). Start from (3.9.30), relegate to the normalization con-
stant any multiplicative term not involving σ and rearrange to obtain:

π(σ |y,β ) ∝ σ
−ᾱ/2−1 exp

(
− δ̄

2σ

)
(3.9.34)

with:

ᾱ = α +n δ̄ = δ +(y−Xβ )′(y−Xβ ) (3.9.35)

This is the kernel of an inverse gamma distribution with shape ᾱ/2 and scale δ̄/2:
π(σ |y,β )∼ IG(ᾱ/2, δ̄/2).

We can now introduce the Gibbs sampling algorithm for the linear regression model.

algorithm 9.1: Gibbs sampling algorithm for the linear regression model

1. set initial values β (0) and σ (0). We use the maximum likelihood estimates β (0) = β̂ and σ (0) = σ̂ .

2. at iteration j, draw:

β ( j) from π(β |y,σ)∼ N(b̄,V̄ ) with:

V̄ = (V−1 +σ
−1X ′X)−1 b̄ = V̄ (V−1b+σ

−1X ′y)

3. at iteration j, draw:

σ ( j) from π(σ |y,β )∼ IG(ᾱ/2, δ̄/2) with:

ᾱ = α +n δ̄ = δ +(y−Xβ )′(y−Xβ )

4. repeat until the desired number of iterations is realised.

9.5 Linear regression with heteroscedastic disturbances

The linear regression model assumes that the residual variance is constant over observations: εi∼N(0,σ).
Sometimes this assumption is untenable and heteroscedasticity must be explicitely integrated in the model.
The linear regression then reformulates as:

yi = β1xi1 +β2xi2 + · · ·+βkxik + εi εi ∼ N(0,σwi) i = 1, · · · ,n (3.9.36)
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The residual variance is now made observation-specific through the weighting term wi. To estimate the
model, we follow the approach of Koop (2003). First, assume that the weights wi are a log-linear function
of h regressors:

wi = exp(γ1zi1 + γ2zi2 + · · ·+ γhzih) i = 1, · · · ,n (3.9.37)

The h regressors zi1, · · · ,zih may include some or all of the regressors xi1, · · · ,xik, and possibly other
regressors. It may not include a constant, which would be redundant with the common variance term σ .
For observation i the model rewrites in compact form as:

yi = x′iβ + εi εi ∼ N(0,σ exp(z′iγ)) zi =
(
zi1 zi2 · · · zih

)′ (3.9.38)

Stacking then for the n observations:

y = Xβ + ε ε ∼ N(0,σW ) W = diag(exp(Zγ)) Z =
(
z1 z2 · · · zn

)′ (3.9.39)

The parameters of interest for the model are then θ = {β ,σ ,γ}. Following definition 3.3, Bayes rule is
given by:

π(β ,σ ,γ|y) ∝ f (y|β ,σ ,γ)π(β ,σ ,γ) (3.9.40)

From (3.9.39), the likelihood function obtains as (book 2, p. 33):

f (y|β ,σ ,γ) = (2πσ)−n/2 |W |−1/2 exp
(
−1

2
(y−Xβ )′W−1(y−Xβ )

σ

)
(3.9.41)

For further reference, it is useful to note that the likelihood function alternatively rewrites as:

f (y|β ,σ ,γ) = (2πσ)−n/2 exp
(
−1

2
[
1′nZγ +(y−Xβ )′ diag(exp(−Zγ)) (y−Xβ )/σ

])
(3.9.42)

For the prior we follow definition 4.1 and assume independence between the parameters so that
π(β ,σ ,γ) = π(β )π(σ)π(γ). The priors π(β ) and π(σ) are respectively given by (3.9.10) and (3.9.21).
For the prior π(γ), we set a multivariate normal prior: π(γ)∼ N(g,Q), so that:

π(γ) = (2π)−h/2|Q|−1/2 exp
(
−1

2
(γ−g)′Q−1(γ−g)

)
(3.9.43)

Bayes rule (3.9.40) is not tractable analytically, so Gibbs sampling methods are required. Applying defini-
tion 6.1, the conditional posterior π(β |y,σ ,γ) obtains from the joint posterior (3.9.40) and relegating any
term not involving β to the normalization constant. This yields π(β |y,σ ,γ) ∝ f (y|β ,σ ,γ)π(β ). Using
the likelihood function (3.9.41) and the prior (3.9.10), one obtains:

π(β |y,σ ,γ) ∝ exp
(
−1

2
(y−Xβ )′W−1(y−Xβ )

σ

)
× exp

(
−1

2
(β −b)′V−1(β −b)

)
(3.9.44)

Completing the squares and rearranging yields (book 2, p. 34):

π(β |y,σ ,γ) ∝ exp
(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
(3.9.45)

with:

V̄ = (V−1 +σ
−1X ′W−1X)−1 b̄ = V̄ (V−1b+σ

−1X ′W−1y) (3.9.46)

This is the kernel of a multivariate normal distribution with mean b̄ and variance V̄ :
π(β |y,σ ,γ) = N(b̄,V̄ ).
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Consider now the conditional posterior π(σ |y,β ,γ). Start from the joint posterior (3.9.40) and relegate any
term not involving σ to the normalization constant. This yields π(σ |y,β ,γ) ∝ f (y|β ,σ ,γ)π(σ). Using
the likelihood function (3.9.41) and the prior (3.9.21) then rearranging yields:

π(σ |y,β ,γ) ∝ σ
−ᾱ/2−1 exp

(
− δ̄

2σ

)
(3.9.47)

with:

ᾱ = α +n δ̄ = δ +(y−Xβ )′W−1(y−Xβ ) (3.9.48)

Consider finally the conditional posterior π(γ|y,β ,σ). Start from the joint posterior (3.9.40) and relegate
any term not involving γ to the normalization constant. This yields π(γ|y,β ,σ) ∝ f (y|β ,σ ,γ)π(γ). Using
the reformulated likelihood function (3.9.42) and the prior (3.9.43) yields:

π(γ|y,β ,σ) ∝ exp
(
−1

2
[
1′nZγ +(y−Xβ )′ diag(exp(−Zγ)) (y−Xβ )/σ +(γ−g)′Q−1(γ−g)

])
(3.9.49)

This form is non-standard and cannot be rearranged into a known distribution. Sampling from the
conditional posterior π(γ|y,β ,σ) thus requires the use of the Metropolis-Hastings algorithm. We choose
a simple random walk kernel of the form:

γ
( j) = γ

( j−1)+ e e∼ N(0,τIh) (3.9.50)

This implies that q(γ( j−1),γ( j)) ∼ N(γ( j−1),τIh), with τ an exogenous hyperparameter set to generate
a 20-30% acceptance rate of the algorithm. Using definition 7.2 and noting that the symmetry of the
kernel implies q(γ( j−1),γ( j)) = q(γ( j),γ( j−1)), the acceptance probability is given by
α(γ( j−1),γ( j)) = min{1,π(γ( j)|y,β ,σ)/π(γ( j−1)|y,β ,σ)}. Given (3.9.49), this yields:

α(γ( j−1),γ( j))

= min

1,exp

−1
2

 1′nZ(γ( j)− γ( j−1))

+(y−Xβ )′ diag[exp(−Zγ( j))− exp(−Zγ( j−1))] (y−Xβ )/σ

+(γ( j)−g)′Q−1(γ( j)−g)− (γ( j−1)−g)′Q−1(γ( j−1)−g)

 (3.9.51)

The Gibbs sampling algorithm for the model with heteroscedasticity is then:

algorithm 9.2: Gibbs sampling algorithm for the linear regression model with heteroscedasticity

1. set initial values β (0), σ (0) and γ(0). We use the maximum likelihood estimates β (0) = β̂ and
σ (0) = σ̂ , and set γ(0) = 0.

2. at iteration j, draw:

β ( j) from π(β |y,σ ,γ)∼ N(b̄,V̄ ) with:

V̄ = (V−1 +σ
−1X ′W−1X)−1 b̄ = V̄ (V−1b+σ

−1X ′W−1y)

3. at iteration j, draw:

σ ( j) from π(σ |y,β ,γ)∼ IG(ᾱ/2, δ̄/2) with:

ᾱ = α +n δ̄ = δ +(y−Xβ )′W−1(y−Xβ )

4. at iteration j, draw:

a candidate value γ̃ from γ̃ = γ( j−1)+ e , π(e)∼ N(0,τIh)
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5. at iteration j: obtain the acceptance probability α(γ( j−1),γ( j)) given by (3.9.51)

6. at iteration j: draw a uniform random number u from u∼U(0,1).

if u≤ α(γ( j−1),γ( j)), set γ( j) = γ̃; else, set γ( j) = γ( j−1)

7. repeat until the desired number of iterations is realised.

9.6 Linear regression with autocorrelated disturbances

Consider the linear regression model in the context of time series. It is common in this case that the
disturbances display serial correlation across periods or autocorrelation. The model may then rewrite as:

yt = β1x1t +β2x2t + · · ·+βkxkt + εt εt = φ1εt−1 + · · ·+φqεt−q +ut ut ∼ N(0,σ) (3.9.52)

The sample contains T observations for t = 1, · · · ,T , and at each period the disturbance εt is related to q
of its lags (autocorrelation of order q). The model rewrites in compact form as:

yt = xtβ + εt εt = etφ +ut ut ∼ N(0,σ) (3.9.53)

with:

xt =
(
x1t x2t · · · xkt

)
et =

(
εt−1 εt−2 · · · εt−q

)
φ =

(
φ1 φ2 · · · φq

)′ (3.9.54)

The parameters of interest of the model are then θ = {β ,σ ,φ}. To estimate the model, we follow the
approach of Chib (1993).

From definition 3.3 and assuming independence between the parameters as in definition 4.1 so that
π(β ,σ ,φ) = π(β )π(σ)π(φ), Bayes rule is given by:

π(β ,σ ,φ |y) ∝ f (y|β ,σ ,φ)π(β )π(σ)π(φ) (3.9.55)

Consider first the likelihood function f (y|β ,σ ,φ). For the incoming developements, we define the
lag polynomial φ(L) as:

φ(L)xt = (1−φ1L−·· ·−φqLq)xt = xt −φ1xt−1−·· ·−φqxt−q Lrxt ≡ xt−r (3.9.56)

Apply the lag polynomial on both sides of (3.9.53) and rewrite in compact form for the T periods to
obtain:

y∗ = X∗β +u u∼ N(0,σ IT ) (3.9.57)

with:

y∗ =


y∗1
y∗2
...

y∗T

 y∗t ≡ φ(L)yt X∗ =


x∗1
x∗2
...

x∗T

 x∗t ≡ φ(L)xt u =


u1
u2
...

uT

 (3.9.58)

We assume that q initial conditions are available to compute y∗t and x∗t for t = 1,2, · · · It follows
immediately from (3.9.57) that y∗ ∼ N(X∗β ,σ IT ). The likelihood function then writes as:

f (y|β ,σ ,φ) = (2πσ)−T/2 exp
(
−1

2
(y∗−X∗β )′(y∗−X∗β )

σ

)
(3.9.59)
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Alternatively, rewrite (3.9.53) as:

ε = Eφ +u ε =


ε1
ε2
...

εT

 E =


e1
e2
...

eT

 (3.9.60)

It then follows that ε ∼ N(Eφ ,σ IT ) and the likelihood function rewrites as:

f (y|β ,σ ,φ) = (2πσ)−T/2 exp
(
−1

2
(ε−Eφ)′(ε−Eφ)

σ

)
(3.9.61)

For the priors, π(β ) and π(σ) are unchanged and respectively given by (3.9.10) and (3.9.21). For φ , we
assume a multivariate normal distribution with mean p and variance H: π(φ)∼ N(p,H). Following:

π(φ) = (2π)−q/2|H|−1/2 exp
(
−1

2
(φ − p)′H−1(φ − p)

)
(3.9.62)

Bayes rule (3.9.55) is not tractable analytically, so Gibbs sampling methods are required. Applying defini-
tion 6.1, the conditional posterior π(β |y,σ ,φ) obtains from the joint posterior (3.9.55) and relegating any
term not involving β to the normalization constant. This yields π(β |y,σ ,φ) ∝ f (y|β ,σ ,φ)π(β ). Using
the likelihood function (3.9.59) and the prior (3.9.10), one obtains:

π(β |y,σ ,φ) ∝ exp
(
−1

2
(y∗−X∗β )′(y∗−X∗β )

σ

)
× exp

(
−1

2
(β −b)′V−1(β −b)

)
(3.9.63)

This is similar to (3.9.11) (with y∗ and X∗ instead of y and X), so after completing the squares, we obtain:

π(β |y) ∝ exp
(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
(3.9.64)

with:

V̄ = (V−1 +σ
−1X∗′X∗)−1 b̄ = V̄ (V−1b+σ

−1X∗′y∗) (3.9.65)

This is the kernel of a multivariate normal distribution with mean b̄ and variance V̄ :
π(β |y,σ ,φ) = N(b̄,V̄ ).

Consider now the conditional posterior π(σ |y,β ,φ). Start from the joint posterior (3.9.55) and relegate
any term not involving σ to the normalization constant. This yields π(σ |y,β ,φ) ∝ f (y|β ,σ ,φ)π(σ).
Using the likelihood function (3.9.59) and the prior (3.9.21) then rearranging yields:

π(σ |y,β ,φ) ∝ σ
−ᾱ/2−1 exp

(
− δ̄

2σ

)
(3.9.66)

with:

ᾱ = α +T δ̄ = δ +(y∗−X∗β )′(y∗−X∗β ) (3.9.67)

This is the kernel of an inverse gamma distribution with shape ᾱ and scale δ̄ : π(σ |y,β ,φ)∼ IG(ᾱ, δ̄ ).

Consider finally the conditional posterior π(φ |y,β ,σ). Start from the joint posterior (3.9.55) and relegate
any term not involving φ to the normalization constant. This yields π(φ |y,β ,σ) ∝ f (y|β ,σ ,φ)π(φ).
Using the reformulated likelihood function (3.9.61) and the prior (3.9.62) then rearranging yields:

π(φ |y,β ,σ) ∝ exp
(
−1

2
(ε−Eφ)′(ε−Eφ)

σ

)
× exp

(
−1

2
(φ − p)′H−1(φ − p)

)
(3.9.68)
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Completing the squares and rearranging yields (book 2, p. 34):

π(φ |y,β ,σ) ∝ exp
(
−1

2
(φ − p̄)′H̄−1(φ − p̄)

)
(3.9.69)

with:

H̄ = (H−1 +σ
−1E ′E)−1 p̄ = H̄(H−1 p+σ

−1E ′ε) (3.9.70)

This is the kernel of a multivariate normal distribution with mean p̄ and variance H̄:
π(φ |y,β ,σ)∼ N(p̄, H̄).

The Gibbs sampling algorithm for the model with autocorrelation is then:

algorithm 9.3: Gibbs sampling algorithm for the linear regression model with autocorrelation

1. set initial values β (0), σ (0) and φ (0). We use the maximum likelihood estimates β (0) = β̂ , σ (0) = σ̂

and set φ (0) = 0.

2. at iteration j, draw:

β ( j) from π(β |y,σ ,φ)∼ N(b̄,V̄ ) with:

(V−1 +σ
−1X∗′X∗)−1 b̄ = V̄ (V−1b+σ

−1X∗′y∗)

3. at iteration j, draw:

σ ( j) from π(σ |y,β ,φ)∼ IG(ᾱ/2, δ̄/2) with:

ᾱ = α +T δ̄ = δ +(y∗−X∗β )′(y∗−X∗β )

4. at iteration j, draw:

φ ( j) from π(φ |y,β ,σ)∼ N(p̄, H̄) with:

H̄ = (H−1 +σ
−1E ′E)−1 p̄ = H̄(H−1 p+σ

−1E ′ε)

5. repeat until the desired number of iterations is realised.

9.7 Efficient estimation

Consider the Bayesian regression model with independent prior developed in section 9.4. The model
necessitates the Gibbs sampling algorithm and thus implies that at each iteration a new value β is sampled
from its conditional posterior π(β |y,σ) ∼ N(b̄,V̄ ) (see step 2 in algorithm 9.1). The parameters for the
posterior are given by (3.9.33), repeated here for convenience:

V̄ = (V−1 +σ
−1X ′X)−1 b̄ = V̄ (V−1b+σ

−1X ′y) (3.9.71)

Notice that the computation of b̄ involves the calculation of V̄ , and that the computation of V̄ in turn
implies an explicit matrix inversion. Inversion is a costly operation, with the cost increasing at a cubic rate
with k, the dimension of V̄ . For small values of k inversion can be performed quickly, but for large values
the cost may become prohibitive, especially since the calculation must be repeated at each iteration of the
Gibbs algorithm.

To save some computational time, it is preferable to adopt an alternative approach which avoids the explicit
inversion required to compute V̄ . First, note from (3.9.71) that we can calculate V̄−1 = (V−1 +σ−1X ′X)
without inversion of the right-hand side. Then denote by G the lower triangular Cholesky factor of V̄−1 so
that V̄−1 = GG′. This in turn implies that V̄ = (GG′)−1 = G−1′G−1 so that G−1′ is the (upper triangular)
Cholesky factor of V̄ .
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Note then that from property d.2 of the multivariate normal distribution we can sample a value β from
π(β |y,σ)∼ N(b̄,V̄ ) by calculating:

β = b̄+ξ ξ ∼ N(0,V̄ ) (3.9.72)

And equivalently, this can be done from:

β = G−1′G−1(V−1b+σ
−1X ′y)+G−1′

ζ ζ ∼ N(0, Ik) (3.9.73)

Eventually factoring the G−1′ term yields:

β = G−1′ [G−1(V−1b+σ
−1X ′y)+ζ

]
ζ ∼ N(0, Ik) (3.9.74)

Sampling a value β then only involves an inversion of G, twice. The benefit of (3.9.74) is that G is a
triangular matrix so that inversion can be done at a cheaper cost by back- and forward-substitution. Such
optimized inversion procedures for triangular matrices are routinely performed by numerical softwares. It
can then be shown (see for instance Golub and Loan (1996)) that using this approach is twice as fast as
using brute strength inversion in (3.9.71), which proves critical for large dimensional models1.

The method is general and can be summarised by the following algorithm:

algorithm 9.4: Efficient sampling algorithm

Consider some n-dimensional parameter θ with θ ∼ N(µ,Σ) where Σ−1 is known, µ is of the form
µ = Σm, and m is some known n-dimensional vector. To sample efficiently from θ ∼ N(µ,Σ):

1. compute G, the Cholesky factor of Σ−1, so that Σ−1 = GG′.

2. sample ζ from ζ ∼ N(0, In).

3. solve for θ = G−1′ [G−1m+ζ
]

efficiently by back- and forward-substitution.

Algorithm 9.4 can be applied to any model involving a normal distribution and an explicit inversion of
its variance matrix. In particular, it can also be used to reduce the computational cost of the β steps in
algorithms 9.2 and 9.3 for the heteroscedastic and autocorrelated regression models.

9.8 Application: estimating a Taylor rule for the United States

The conduct of monetary policy constitutes the core activity of central banking institutions. To understand
how central institutions determine the leading interest rate, Taylor (1993) proposed a simple targetting rule
linking the nominal interest rate to inflation and the output gap. Precisely, he postulated that central banks
respond to inflation and economic activity with a linear policy rule of the form:

r = r̄+ γπ +φ ŷ (3.9.75)

r denotes the federal funds rate, r̄ the target real interest rate, while π and ŷ respectively denote the
inflation rate and output gap, defined as the percentage deviation of actual output from potential output. γ

and φ are the policy parameters determining the amplitude of the response of central authorities. For the
policy parameters, Taylor (1993) assumed values of r̄ = 1, γ = 1.5 and φ = 0.5. This implies that the FED
responds to positive inflation and output gap with contractionary monetary policy, increasing the federal
funds rate in reaction to inflationary and overheating pressures.

1Precisely, the number of operations to invert a generic k× k matrix is of order 2O(k3/3), while matrix inversion with Gauss-
Jordan elimination only scales to O(k3/3).
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To verify the relevance of the Taylor rule for the US, we collect quarterly data for the federal funds rate,
inflation and the output gap. The data is quarterly and ranges from 1955q1 to 2020q42. The series are
plotted in Figure 9.1.
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Figure 9.1: Time series for the US Taylor rule

We first start with a naive maximum likelihood estimate of the model. Table 9.1 reports the estimates of
the Taylor rule for the different models developed in this chapter. Looking at the second line, we find our
naive maximum likelihood estimate. The values are overall consistent with the theoretical Taylor rule,
but the constant r̄ is too large while the policy responses γ and φ are considerably too low. Also, the
coefficients somewhat suffer from large standard errors, especially the constant r̄.

model r̄ γ φ

Taylor rule 1 1.5 0.5
maximum likelihood 1.36 [0.23] 0.99 [0.05] 0.14 [0.06]
simple Bayesian 1.03 [0.09] 1.11 [0.03] 0.34 [0.04]
hierarchical 1.17 [0.16] 1.04 [0.04] 0.21 [0.05]
independent 1.02 [0.09] 1.11 [0.03] 0.35 [0.04]
heteroscedastic 1.02 [0.08] 1.11 [0.04] 0.35 [0.03]
autocorrelated 1.02 [0.10] 0.88 [0.07] 0.38 [0.04]

Table 9.1: Posterior estimates for the US Taylor rule (standard deviations in square brackets)

We now try to improve the estimates with Bayesian methods. The five Bayesian models introduced in this
chapter require the definition of a prior distribution π(β )∼N(b,V ) for the regression coefficients. For the
prior mean b, we can simply use the values implied by the theoretical Taylor rule. For the prior variance
V , the choice becomes quite subjective. A reasonable strategy consists in setting V as a diagonal matrix,
implying no a priori covariance between the regression coefficients. Also, for the variances, the following
is proposed: assume that with 95% confidence the target rate r̄ is comprised between 0.8 and 1.2. This
implies a standard deviation of 0.1 and a variance of 0.01. Similarly, assuming with 95% confidence
that the response to inflation γ is comprised between 1.3 and 1.7 yields a standard deviation of 0.1 and
a variance of 0.01. Finally, if we believe with 95% confidence that the response to the output gap φ lies
between 0.4 and 0.6, we obtain a standard deviation of 0.05 and a prior variance of 0.0025.

2The three series are obtained from the Saint Louis FED website; federal funds rate: series FEDFUNDS; inflation: series
CPIAUCSL, switched to year-on-year growth rate; output gap: series GDPC1 of actual GDP, and GDPPOT of potential GDP;
output gap defined as 100 times the ratio of actual over potential GDP.
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This eventually yields:

b =

 1
1.5
0.5

 V =

0.01 0 0
0 0.01 0
0 0 0.0025

 (3.9.76)

Depending on the models, other priors have to be defined. For π(σ) ∼ IG(α/2,δ/2), a classical choice
consists in setting α = δ = 0.0001. These tiny values set a diffuse prior, leaving the burden of estimation
to the data. Similarly for the heteroscedatic and autocorrelated models, there are no obvious a priori values
for π(γ)∼ N(g,Q) and π(φ)∼ N(p,Z). So we set diffuse prior by setting g = 0h, Q = 100Ih, p = 0q, and
Z = 100 Iq.

The resulting estimates (using the posterior median) for the Bayesian models are displayed in rows 3-7
of Table 9.1. Two main conclusions arise. First, compared to the maximum likelihood regression, the
Bayesian estimates get closer to the theoretical Taylor rule. The Bayesian priors effectively managed
to mitigate the data information, driving the estimates towards the prior values. The obtained posterior
estimates are thus more consistent with economic theory. Second, the addition of prior information also
contributed to reduce the posterior variance, producing more accurate estimates. This is especially obvious
for the constant r̄, but overall all the coefficients benefited from the additional prior insight.

The question that arises next is: are these Bayesian models really better than the regular maximum like-
lihood model? Do they produce better predictions? And among them, which one is the most relevant?
These questions will be answered in the next chapter.
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CHAPTER 10

Applications with the linear regression
model

This chapter introduces two essential features of the linear regression model: prediction, and model se-
lection.

10.1 Prediction

Prediction is probably the most important application when it comes to the linear regression model. In the
context of a frequentist approach with maximum likelihood estimates for β and σ , prediction is straight-
forward. Denote by X̂ the m× k matrix containing the m additional vectors of regressors from which we
want to predict, and by ŷ the resulting m-dimensional vector of predictions. From (3.9.2), a minimum
variance linear prediction obtains as:

ŷ = E(y|X̂) = X̂ β̂ (3.10.1)

Confidence intervals at the α confidence level can then be obtained from (see for instance Greene (2003),
chapter 6):

ŷ±Tα/2(σ Im + X̂ [σ(X ′X)−1]X̂ ′) d f = n− k (3.10.2)

In a Bayesian context predictions are formed using the posterior predictive distribution. Consider first the
simple Bayesian regression developed in section 9.2. From definition 4.8, the likelihood function (3.9.4)
and the posterior distribution (3.9.17), the posterior predictive distribution obtains as:

f (ŷ|y) =
∫

f (ŷ|y,β ) π(β |y) dβ

∝

∫
exp
(
−1

2
(ŷ− X̂β )′(ŷ− X̂β )

σ

)
exp
(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
dβ (3.10.3)

After some algebraic manipulations, this rewrites as (book 2, p. 37):

f (ŷ|y) ∝ exp
(
−1

2
(ŷ− X̂ b̄)′(σ Im + X̂V̄ X̂ ′)−1(ŷ− X̂ b̄)

)
(3.10.4)

where b̄ and V̄ are defined as in (3.9.14). This is the kernel of a multivariate normal distribution with mean
X̂ b̄ and variance σ Im + X̂V̄ X̂ ′: f (ŷ|y)∼ N(X̂ b̄, σ Im + X̂V̄ X̂ ′). The prediction is thus normal, centered on
the posterior mean X̂ b̄. The variance is similar to the scale parameter in the frequentist equation (3.10.2),
except that the Bayesian estimate V̄ = (V−1 +σ−1X ′X)−1 additionally accounts for the prior variance V .

Notice that the structure of the variance implies that the prediction has two sources of variance. The first
component σ Im is the variance due to the intrinsic noise in the model (the residual term ε in (3.9.2)). The
second component X̂V̄ X̂ ′ reflects the uncertainty about β , the unknown parameter of the model.
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We now consider the regression model with the hierarchical prior developed in section 9.3. From defi-
nition 4.8, the likelihood function (3.9.4) and the posterior distribution (3.9.22), the posterior predictive
distributon obtains as:

f (ŷ|y) =
∫ ∫

f (ŷ|y,β ,σ) π(β ,σ |y) dβdσ

∝

∫ ∫
σ
−m/2 exp

(
−1

2
(ŷ− X̂β )′(ŷ− X̂β )

σ

)
exp
(
−1

2
(y−Xβ )′(y−Xβ )

σ

)
×σ

−k/2 exp
(
−1

2
(β −b)′(σV )−1(β −b)

)
×σ

−α/2−1 exp
(
− δ

2σ

)
(3.10.5)

After some manipulations, the expression reformulates as (book 2, p. 39):

f (ŷ|y) ∝

(
1+

1
ᾱ
(ŷ− X̂ b̄)′[δ̄ (Im + X̂V̄ X̂ ′)/ᾱ]−1(ŷ− X̂ b̄)

)−(ᾱ+m)/2

(3.10.6)

with V̄ , b̄, ᾱ and δ̄ defined as in (3.9.24). This is the kernel of a multivariate Student distribution with
location X̂ b̄, scale δ̄ (Im + X̂V̄ X̂ ′)/ᾱ and degrees of freedom ᾱ: f (ŷ|y) ∼ T (X̂ b̄, δ̄ (Im + X̂V̄ X̂ ′)/ᾱ, ᾱ).
Notice the similarities with (3.10.4): the predictive distribution is the same as in the Gaussian case,
except that treating σ as an unknown parameter results in additional uncertainty. Following, the predictive
distribution becomes Student, the fat tails reflecting the increased variance.

Consider predictions for the independent prior model developed in section 9.4. The model requires Gibbs
sampling for estimation, and thus the predictive density must be recovered from the Gibbs sampling sam-
pling draws, following algorithm 6.3. Adapted to the independent prior linear regression, the algorithm
becomes:

algorithm 10.1: Gibbs sampling algorithm for the posterior predictive distribution, linear regression
with independent prior

1. at iteration j, draw β ( j) and σ ( j) from their posterior distributions. Recycle the values obtained
from the jth iteration of the Gibbs sampling algorithm.

2. draw ε from ε ∼ N(0,σ Im), then calculate ŷ = X̂β + ε .

3. marginalize, that is, discard β and σ and keep only ŷ.

4. repeat until the desired number of iterations is realised.

Predictions are only slightly more complicated to obtain in the case of the heteroscedastic model of section
9.5 and the autocorrelation model of section 9.6. For the former, algorithm 6.3 becomes:

algorithm 10.2: Gibbs sampling algorithm for the posterior predictive distribution, linear regression
with heteroscedasticity

1. at iteration j, draw β ( j), σ ( j) and γ( j) from their posterior distributions. Recycle the values obtained
from the jth iteration of the Gibbs sampling algorithm.

2. calculate W from W = diag(exp(Ẑγ)), then draw ε from ε ∼ N(0,σW ); finally, calculate
ŷ = X̂β + ε .

3. marginalize, that is, discard β ,σ and γ and keep only ŷ.

4. repeat until the desired number of iterations is realised.
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For the model with autocorrelation, finally, algorithm 6.3 becomes:

algorithm 10.3: Gibbs sampling algorithm for the posterior predictive distribution, linear regression
with autocorrelation

1. at iteration j, draw β ( j), σ ( j) and φ ( j) from their posterior distributions. Recycle the values obtained
from the jth iteration of the Gibbs sampling algorithm.

2. for j = 1, · · · ,m, draw ut+ j from ut+ j ∼ N(0,σ), then calculate:
εt+ j = φ1εt+ j−1 + · · ·+φqεt+ j−q +ut+ j.

3. for j = 1, · · · ,m, calculate ŷt+ j from ŷt+ j = x′t+ jβ + εt+ j

4. marginalize, that is, discard β ,σ and φ and keep only ŷ = ŷt+1, · · · , ŷt+m.

5. repeat until the desired number of iterations is realised.

10.2 Forecast evaluation

Producing accurate predictions constitutes a central concern in linear gression. In this respect, forecast
evaluation criteria constitutes an important aspect of the prediction exercise. We start the analysis with
simple measures of in-sample fit. It follows immediately from (3.9.2) that ε = y−Xβ . Denoting by β̂ the
point estimate for the regression coefficients (the posterior median for all Bayesian models), an estimate
of the residuals obtains as:

ε̂ = y−X β̂ (3.10.7)

Based upon this, we define the following classical goodness of fit quantities: the sum of squared residuals,
the R2 and the adjusted-R2:

SSR = ε̂
′
ε̂ T SS = (y− ȳ)′(y− ȳ) R2 = 1− SSR

T SS
adj-R2 = 1− (1−R2)

n−1
n− k

(3.10.8)

For the maximum likelihood regression, two additional classical measures of goodness of fit are provided
by the Akaike Information Criterion (AIC) and the so-called Schwarz’s Bayesian Information Criterion
(BIC), respectively defined as:

AIC = 2k/n−2 L̂/n BIC = k log(n)/n−2 L̂/n (3.10.9)

where L̂ = log( f (y|θ̂)) is the log-likelihood of the model defined in (3.9.6), evaluated at the maximum
likelihood estimates β̂ and σ̂ . After some manipulations (book 2, p. 42), the two criteria rewrite as:

AIC = 2k/n + log(σ̂) BIC = k log(n)/n + log(σ̂) (3.10.10)

While in-sample criteria provide useful insight, most often we are interested in the out-of-sample predic-
tive performance of the model. Denote again by ŷ the m-dimensional vector of out-of-sample predictions,
and by ŷi the individual predictions in the vector, i = 1, · · · ,m. For Bayesian models, the predicted value
is simply defined as the median of the posterior predictive distribution. Denote then by yi, i = 1, · · · ,m the
set of corresponding actual values. Then the Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE) and Mean Absolute Percentage Error (MAPE) are defined as:

RMSE =

√
1
m

m

∑
i=1

(yi− ŷi)2 MAE =
1
m

m

∑
i=1
|yi− ŷi| MAPE =

100
m

m

∑
i=1

∣∣∣∣yi− ŷi

yi

∣∣∣∣ (3.10.11)

The three criteria represent a measure of distance so that the lower the better. Two additional measures
are of interest. The Theil inequality coefficient (Theil-U) is always comprised between 0 and 1; a perfect
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fit yields a value of 0, while forecasts get increasingly inaccurate as the value approaches 1. The bias
represents the tendency of the prediction to be systematically higher of systematically lower than the
realized value; A value of 0 indicates no bias, while values tending towards 1 (respectively -1) represents
a tendency to be systematically higher (respectively lower) than the observation. The formulas are given
by:

Theil-U =

√
∑

m
i=1(yi− ŷi)2√

∑
m
i=1 y2

i +
√

∑
m
i=1 ŷ2

i

bias =
∑

m
i=1 yi− ŷi

∑
m
i=1 |yi− ŷi|

(3.10.12)

The above forecast evaluation criteria consider only single-valued forecasts. Bayesian models however
are richer since they result in full predictive distributions. Ideally, a Bayesian criterion should thus account
for the entire distribution, and not just the point estimate. Intuitively, a preditive distribution will produce
good forecasts if the realised values are located in points of high density. The log score (LogS) of Good
(1952) and the continuous ranked probability score (CRPS) of Matheson and Winkler (1976) build on
this principle. They are defined as:

LogS =− log( f̂ (yi)) CRPS =
∫ +∞

−∞

[
F̂(z)−1(yi ≤ z)

]2 dz (3.10.13)

where we use f̂ and F̂ to denote respectively the density and cumulative distribution functions of the
predictive density. In short, both measures attribute a penalty to predictions that deviate from the points
of high density in the predictive distribution. More accurate forecasts result in lower penalties and hence
lower scores. Computing the log score is straightforward for the simple and hierarchical linear regressions
since the predictive density take analytical forms (refer to (3.10.4) and (3.10.6), respectively). For the
other models, one must rely on numerical approximations. A classical solution proposed by Krüger et al.
(2017) consists in using a Gaussian approximation of the posterior predictive distribution, noting that
predictive distributions are typically close to a Normal distribution. In this case, the log score is given by:

LogS =− log(φ̂(yi)) (3.10.14)

where φ̂ denotes the density function of the normal distribution with mean µ̂ and variance σ̂ calculated
from the Gibbs sampler draws of the empirical predictive density.

For the CRPS, (3.10.13) is never used directly. Analytical equivalents are available whenever the predic-
tive density is normal (Gneiting et al. (2005)) or Student (Jordan et al. (2019)). Consider first a Normal
predictive density f (ŷi|y) ∼ N(µ̂i, σ̂i), and denote by ỹi = (yi− µ̂i)/ŝi, where ŝi =

√
σi is the standard

deviation of the predictive distribution. Then the CRPS is given by:

CRPS = ŝi

{
ỹi(2Φ(ỹi)−1)+2φ(ỹi)−

1√
π

}
(3.10.15)

where φ and Φ respectively denote the density and cumulative distribution function of the standard normal
distribution. Consider then a Student distribution predictive density f (ŷi|y)∼ T (µ̂i, σ̂i, ν̂i), and denote by
ỹi = (yi− µ̂i)/ŝi, where ŝi =

√
σi is the square root of the scale parameter. Then the formula becomes:

CRPS = ŝi

{
ỹi(2F(ỹi)−1)+2 f (ỹi)

(
ν̂i + ỹ2

i

ν̂i−1

)
− 2
√

ν̂i

ν̂i−1
B(1

2 , ν̂i− 1
2)

B(1
2 ,

ν̂i
2 )

2

}
(3.10.16)

where B(x) denotes the Beta function. Whenever analytical formulas are not available for the predic-
tive density, the CRPS can be approximated from the Gibbs sampling draws of the posterior predictive
distribution. Krüger et al. (2017) show that the CRPS can be consistently estimated from:

CRPS≈ 1
J

J

∑
j=1
|ŷ( j)

i − yi|−
1

2 J2

J

∑
j=1

J

∑
k=1
|ŷ( j)

i − ŷ(k)i | (3.10.17)
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where ŷ( j) denotes draw j obtained from the Gibbs sampler for the predictive distribution. Equations
(3.10.14) - (3.10.17) provide formulas for individual forecasts. For an exercise involving m forecasts, the
overall log score and CRPS are then obtained by taking the mean over the m individual values.

10.3 Marginal likelihood

The marginal likelihood constitutes the basis of model comparison and hypothesis testing in the context of
linea regression. Consider first the simple Bayesian regression developed in section 9.2. From definition
4.6, the marginal likelihood obtains from:

f (y) =
∫

f (y|β )π(β )dβ

=
∫
(2πσ)−n/2 exp

(
−1

2
(y−Xβ )′(y−Xβ )

σ

)
× (2π)−k/2|V |−1/2 exp

(
−1

2
(β −b)′V−1(β −b)

)
dβ

(3.10.18)

where use has been made of the likelihood function f (y|β ) given by (3.9.4) and the prior π(β ) given by
(3.9.10). Rearranging and completing the squares, this reformulates as (book 2, p. 43):

f (y) = (2π)−n/2
σ
−n/2|V̄ |1/2|V |−1/2× exp

(
−1

2
[
y′σ−1y+b′V−1b− b̄V̄−1b̄

])
×
∫
(2π)−k/2|V̄ |−1/2 exp

(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
dβ (3.10.19)

with V̄ and b̄ defined as in (3.9.14). The second term is the probability density function of a multivariate
normal distribution which thus integrates to 1, leaving only:

f (y) = (2π)−n/2
σ
−n/2|V̄ |1/2|V |−1/2× exp

(
−1

2
[
y′σ−1y+b′V−1b− b̄V̄−1b̄

])
(3.10.20)

Numerical instability may occur if the prior variance values in V are small. For this reason, it is convenient
to reformulate (3.10.20) in numerically stable form as (book 2, p. 44):

f (y) = (2π)−n/2
σ
−n/2|Ik +σ

−1V X ′X |−1/2 exp
(
−1

2
[
y′σ−1y+b′V−1b− b̄V̄−1b̄

])
(3.10.21)

Next, consider the hierarchical prior developed in section 9.3. From definition 4.6, the marginal likelihood
obtains from:

f (y) =
∫ ∫

f (y|β ,σ)π(β ,σ)dβdσ

=
∫ ∫

(2πσ)−n/2 exp
(
−1

2
(y−Xβ )′(y−Xβ )

σ

)
× (2π)−k/2|σV |−1/2 exp

(
−1

2
(β −b)′(σV )−1(β −b)

)
× δ/2α/2

Γ(α/2)
σ
−α/2−1 exp

(
− δ

2σ

)
dβdσ

(3.10.22)

where we used the likelihood function f (y|β ,σ) given by (3.9.4) and the priors π(β |σ) given by (3.9.20)
and π(σ) given by (3.9.21). Rearranging and completing the squares, this reformulates as (book 2, p. 44):
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f (y) = π
−n/2 |V |−1/2|V̄ |1/2 δ α/2

δ̄ ᾱ/2

Γ(ᾱ/2)
Γ(α/2)

×
∫ ∫

(2π)−k/2|σV̄ |−1/2 exp
(
−1

2
(β − b̄)′(σV̄ )−1(β − b̄)

)
× δ̄/2ᾱ/2

Γ(ᾱ/2)
σ
−ᾱ/2−1 exp

(
− δ̄

2σ

)
dβdσ

(3.10.23)

The values of V̄ , b̄, ᾱ and δ̄ are as in (3.9.24). The terms within the integrals respectively represent the
probability density functions of multivariate normal and inverse Gamma distributions. They thus integrate
to 1, leaving only:

f (y) = π
−n/2 |V |−1/2|V̄ |1/2 δ α/2

δ̄ ᾱ/2

Γ(ᾱ/2)
Γ(α/2)

(3.10.24)

It is also convenient to reformulate this term in numerically stable form as (book 2, p. 46):

f (y) = π
−n/2 |Ik +V X ′X |−1/2 δ α/2

δ̄ ᾱ/2

Γ(ᾱ/2)
Γ(α/2)

(3.10.25)

Consider then the independent prior developed in section 9.4. The model relies on simulation methods,
so the marginal likelihood must be computed from equation (2.6.15), namely:

f (y)≈ f (y|β ∗,σ∗)π(β ∗,σ∗)
π(σ∗|y,β ∗)× 1

J ∑
J
j=1 π(β ∗|σ ( j),y)

(3.10.26)

Using the likelihood function (3.9.4), the priors (3.9.10) and (3.9.21), and the conditional posteriors
(3.9.33) and (3.9.35), it can be shown that the marginal likelihood formulates as (book 2, p. 47):

f (y)≈ π
−n/2 exp

(
−1

2(β −b)′V−1(β −b)
)

1
J ∑

J
j=1 |Ik +σ−1V X ′X)|1/2 exp

(
−1

2(β − b̄)′V̄−1(β − b̄)
) δ α/2

δ̄ ᾱ/2

Γ(ᾱ/2)
Γ(α/2)

(3.10.27)

This form is similar to (3.10.25), save for the approximation of the determinant term stemming from the
Gibbs sampler.

Finally, we consider the linear regression models with heteroscedasticity and autocorrelation developed in
sections 9.5 and 9.6, respectively. These models involve 3 blocks of parameters, and the heteroscedastic
regression additionally necessitates the Metropolis-Hastings algorithm. For these reasons, the Chib (1995)
approach cannot be used directly, and instead we use the Gelfand and Dey (1994) methodology introduced
in section 7.4.

For the heteroscedastic model, a direct application of (2.7.17) yields:

1
f (y)
≈ 1

J

J

∑
j=1

g(θ ( j))

f (y|β ( j),σ ( j),γ( j)) π(β ( j)) π(σ ( j)) π(γ( j))
(3.10.28)

Using the probability density function (2.7.19) along with the likelihood function (3.9.41) and the priors
(3.9.10), (3.9.21) and (3.9.43) then rearranging yields (book 2, p. 48):

log( f (y))≈−log
(
(ωJ)−1(2π)(n−1)/2 |Σ̂|−1/2 |V |1/2 |Q|1/2 Γ(α/2)

δ/2α/2

)
−log

(
J

∑
j=1

1(θ ∈ Θ̂) |W |1/2
σ
(α+n)/2+1 exp

(
1
2

[
(y−Xβ )′(σW )−1(y−Xβ )+(β −b)′V−1(β −b)
+δσ−1 +(γ−g)′Q−1(γ−g)− (θ − θ̂)′Σ̂−1(θ − θ̂)

]))
(3.10.29)
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The summation term may easily break down when n gets large due to the σ (α+n)/2+1 term. A numerically
stable solution consists in converting the log-summation into a summation of logs, which can be done
using the so-called log-sum-exp identity:

log
( J

∑
j=1

xi

)
= log(x̄)+ log

( J

∑
j=1

exp
(

log(xi)− log(x̄)
))

x̄ = max{xi} (3.10.30)

A similar strategy is applied to the regression model with autocorrelation: applying (2.7.17), we obtain:

1
f (y)
≈ 1

J

J

∑
j=1

g(θ ( j))

f (y|β ( j),σ ( j),γ( j)) π(β ( j)) π(σ ( j)) π(φ ( j))
(3.10.31)

Using the probability density function (2.7.19) along with the likelihood function (3.9.61) and the priors
(3.9.10), (3.9.21) and (3.9.62) then rearranging yields (book 2, p. 49):

log( f (y))≈− log
(
(ωJ)−1(2π)(T−1)/2 |Σ̂|−1/2 |V |1/2 |Z|1/2 Γ(α/2)

δ/2α/2

)
− log

(
J

∑
j=1

1(θ ∈ Θ̂)σ (α+T )/2+1 exp
(

1
2

[
(ε−Eφ)′σ−1(ε−Eφ)+(β −b)′V−1(β −b)
+δσ−1 +(φ − p)′Z−1(φ − p)− (θ − θ̂)′Σ̂−1(θ − θ̂)

]))
(3.10.32)

10.4 Application: revisiting the US Taylor rule

We return to the Taylor rule example developed in section 9.8, and ask two additional questions. Does the
data exhibit heteroscedasticity or autocorrelation? And which model produces the best predictions?

To get a hint on the first question, we start by plotting the residuals obtained from the naive maximum
likelihood regression (Figure 10.1).
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Figure 10.1: Maximum likelihood regression: fitted and residuals

At first sight, the residuals appear both heteroscedastic and autocorrelated. Clearly, their variance is
not constant, especially in the 1980’s which exhibits a fueling in volatility. Also, the residuals reveal
periods of positive (1980-2000) and negative (1970-1980) autocorrelation. To make this point formal, we
rely on the marginal likelihood setting developed in section 4.7. We compare the marginal likelihood of
the independent Bayesian regression model based on the assumption of spherical disturbances with the
marginal likelihood of the heteroscedastic and autocorrelated models. The values m(y) of the different
Bayesian regression models are reported in Table 10.1.
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Model SSR adj-R2 m(y) RMSE LogS CRPS

max. likelihood 1398 0.589 – 3.19 – –
simple Bayesian 1496 0.561 -268.38 2.11 2.16 1.22
hierarchical 1412 0.586 -267.48 2.48 2.33 1.45
independent 1503 0.559 -273.16 2.09 2.18 1.21
heteroscedastic 1481 0.565 -256.86 2.10 2.14 1.22
autocorrelated 1725 0.493 -199.74 1.79 2.12 1.06

Table 10.1: Forecast evaluation criteria and marginal likelihood for the linear regression models

The results are unambiguous: the model with spherical disturbances yields a marginal likelihood of
-273.16, considerably smaller than the heteroscedastic model (-256.86) and the autocorrelated model
(-199.74). Using Jeffrey’s Guidelines provided in Table 4.1, we conclude that the data rejects the null
hypothesis of spherical disturbances in favor of both heteroscedasticity and autocorrelation, the latter
being most strongly supported.

We now consider the question of the best predictor. To do so, we separate the data sample into a train
sample including the first 75% of the data (until 2004), and keep the remaining data as test sample. The
models are first estimated on the train sample, along with in-sample fit scores (SSR and adjusted-R2).
Predictions are then formed on the test sample, and the forecasts are evaluated from prediction criteria
(RMSE, log scores and CRPS).

By construction the maximum likelihood model obtains the best in-sample scores, closely followed by
the hierarchical model. The simple, independent and heteroscedastic models perform average, while the
autocorrelated looks especially poor.

Those in-sample results may be quite misleading though, and indeed the conclusions change radically
whenever the models are considered for out-of-sample predictions. Two conclusions arise. First, the
naive maximum likelihood proves the worst model in terms of forecast performance. It is beaten by every
single Bayesian model in terms of RMSE, and quite significantly. This shows that adding relevant prior
information does contribute to improve the predictive performance, while on the other hand simple OLS
models tend to overfit.

Second, the autocorrelated models proves by far the best predictor. This is spectacular in terms of RMSE
and CRPS, and remains marginally true for the log score. This comes in contrast with the poor in-sample
performance, confirming that the quality of a model comes primarily from its ability to catch the true
data generative process outside of the training sample. The heteroscedastic model also performs fair, but
only to a lesser extent compared to the other Bayesian models. Overall, these results confirm the previous
conclusion that heteroscedasticity and autocorrelation represent the correct behaviour of the data.
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CHAPTER 11

Vector autoregressions

This chapter introduces the workhorse of Bayesian time-series econometrics: vector autoregressions. It
focuses on model formulation and estimation. Additional aspects of the model will be discussed in sub-
sequent chapters.

11.1 Formulation and maximum likelihood estimate

A general vector autoregression model, or VAR in short, can be formulated as:

yt =Czt +A1yt−1 + · · ·+Apyt−p + εt εt ∼ N(0,Σ) t = 1, · · · ,T (4.11.1)

where yt is a n-dimensional vector of endogenous variables, zt is a m-dimensional vector of exogenous
variables such as constant and trends, and εt is a n-dimensional vector of residuals. A1, · · · ,Ap are n×n
coefficient matrices on the lagged values of yt while C is a n×m matrix of coefficients on the exogenous
regressors zt . The n-dimensional vector of disturbance εt is assumed to be normally distributed with
zero mean and variance-covariance matrix E(ε ′t εt) = Σ, where Σ is symmetric and positive definite. The
disturbances are non-autocorrelated so that so that E(ε ′t εs) = 0 if t 6= s. The sample is observed over
t = 1, · · · ,T time periods.

A VAR model presents two main characteristics. It is multivariate as it represents a system of n simulta-
neous equations where each of the n endogenous variables is explained by itself and the other variables of
the system. It is also dynamic since the variables yt are explained not only by the exogenous regressors
zt , but also by their own lagged values yt−1, · · · ,yt−p.

The VAR implies the estimation of k = m+ np coefficients for each equation, and thus a total of q = nk
coefficients for the full model. Estimation can be made more convenient by rewriting the VAR in compact
form. Transposing and stacking the elements in (4.11.1) over the T sample periods yields:

Y = X B+E (4.11.2)

with:

Y =


y′1
y′2
...

y′T

 X =


z′1 y′0 · · · y′1−p
z′2 y′1 · · · y′2−p
...

...
. . .

...
z′T y′T−1 · · · y′T−p

 B =


C′

A′1
...

A′p

 E =


ε ′1
ε ′2
...

ε ′T

 (4.11.3)

Y , X , B and E are matrices of respective dimensions T ×n, T × k, k×n and T ×n. In practice, it is often
easier to work with a vectorized version of (4.11.2). Using property m.54 one obtains:

y = X̄β + ε ε ∼ N(0, Σ̄) (4.11.4)

with:

y = vec(Y ) X̄ = In⊗X β = vec(B) ε = vec(E) Σ̄ = Σ⊗ IT (4.11.5)

99
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y and ε are vectors of dimension nT while X̄ is a nT ×q matrix of regressors. β is a q-dimensional vector
that gathers the dynamic coefficients of the model. With this formulation, one can define the parameters
of interest for the model as θ = {β ,Σ}.

Consider first a frequentist approach of the VAR model. Following section 3.1, we need to set the like-
lihood function for the model. It follows immediately from (4.11.4) that y ∼ N(X̄β , Σ̄). The likelihood
function is then given by:

f (y|β ,Σ) = (2π)−nT/2|Σ̄|−1/2exp
(
−1

2
(y− X̄β )′Σ̄−1(y− X̄β )

)
(4.11.6)

Following definition 3.5, the maximum likelihood estimates β̂ and Σ̂ are obtained by maximizing the
likelihood function:

β̂ , Σ̂ = argmax
β ,Σ

log( f (y|β ,Σ)) (4.11.7)

The log-likelihood function is given by:

log( f (y|β ,Σ)) =−nT
2

log(2π)− 1
2

log(|Σ̄|)− 1
2
(y− X̄β )′Σ̄−1(y− X̄β ) (4.11.8)

The maximum is found by solving simultaneously for
∂ log( f (y|β ,Σ))

∂β
= 0 and

∂ log( f (y|β ,Σ))
∂Σ

= 0.

It can be shown (book 2, p. 53) that the resulting estimates are:

β̂ = vec(B̂) B̂ = (X ′X)−1X ′Y Σ̂ =
1
T
(Y −XB̂)′(Y −XB̂) (4.11.9)

The maximum likelihood estimates β̂ and Σ̂ for the VAR model can be seen to coincide with standard OLS
estimates, save for a bias in Σ̂ (the divisor should T − k−1 instead of T to obtain an unbiased estimator).

The maximum likelihood estimates are consistent. Thus for large samples a confidence interval at the α

confidence level for any individual coefficient βi can be obtained from (see for instance Hamilton (1994),
chapter 11):

β̂i±Nα/2 si si =
√

Qii Q = Σ̂⊗ (X ′X)−1 (4.11.10)

11.2 The Minnesota prior

This section introduces the simplest Bayesian VAR model, based on the prior initially developed by
Litterman (1985) and Doan et al. (1984) at the University of Minnesota. In this version of the model, the
residual variance-covariance matrix Σ is assumed to be known so that only the VAR coefficients β remain
to be estimated. To do so, we define Σ = Σ̂, the maximum likelihood estimate obtained from (4.11.9). In
this case, we are left with θ = {β}. From Bayes rule 3.3, the posterior π(β |y) is given by:

π(β |y) ∝ f (y|β )π(β ) (4.11.11)

The likelihood function f (y|β ) is given by (4.11.6). Consider then the prior distribution for β . The
multivariate normal distribution appears as a natural choice. We thus set the prior to be multivariate
normal with prior mean b and prior variance V : π(β )∼ N(b,V ). Following:

π(β ) = (2π)−q/2|V |−1/2 exp
(
−1

2
(β −b)′V−1(β −b)

)
(4.11.12)
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The definition of b and V represents a key aspect of Bayesian VAR modelling and will be discussed in
details shortly. For now we treat these values as given and proceed with estimation: substituting the likeli-
hood function (4.11.6) and the prior (4.11.12) in Bayes rule (4.11.11) and relegating to the normalization
constant any term not involving β , one obtains:

π(β |y) ∝ exp
(
−1

2
(y− X̄β )′Σ̄−1(y− X̄β )

)
× exp

(
−1

2
(β −b)′V−1(β −b)

)
(4.11.13)

Starting from (4.11.13), rearranging and completing the squares, it can be shown (book 2, p. 54) that the
posterior rewrites as:

π(β |y) ∝ exp
(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
(4.11.14)

with:

V̄ = (V−1 +Σ
−1⊗X ′X)−1 b̄ = V̄ (V−1b+ vec(X ′Y Σ

−1)) (4.11.15)

This is the kernel of a multivariate normal distribution with mean b̄ and variance V̄ : π(β |y) = N(b̄,V̄ ).

Now that the posterior is derived, the question that remains is how b and V should be defined. This is a
key element since the quality of the prior determines the relevance of the posterior. The strategy followed
here is due to Litterman (1985) and has by now become canonical under the name of Minnesota prior.

The prior mean b postulates that most economic variables behave as random walks. Therefore, each
variable included in a VAR model should be characterized by a value of 1 in its first own lag, and a value
of 0 for any other coefficient. In practice, VAR models are often estimated with stationary variables. In
this case, a value close to but smaller than 1 such as 0.95 may be prefered for the prior on the first own
lag. As an example, consider a small VAR with 2 variables, 2 lags and one constant, and assume that each
endogenous variable has its own autoregressive coefficient δi on its own first lag. Then one obtains:

(
y1,t
y2,t

)
=

(
0
0

)
+

(
δ1 0
0 δ2

)(
y1,t−1
y2,t−1

)
+

(
0 0
0 0

)(
y1,t−2
y2,t−2

)
+

(
ε1,t
ε2,t

)
⇒ b =



0
δ1
0
0
0
0
0
δ2
0
0


(4.11.16)

For the prior covariance V , the strategy postulates a diagonal matrix (no prior covariance between coeffi-
cients) with smaller prior variance for coefficients on further lags and other variables, reflecting the belief
that such coefficients are more likely to be equal to 0. On the contrary, a large prior variance is set on
exogenous variables as little is known about their coefficient values. This gives the following cases:

1. Coefficients in β relating endogenous variables to their own lags. The prior variance is then given by:(
π1

lagπ3

)2

(4.11.17)

where π1 is an overall tightness parameter that applies to all coefficients, and π3 is a parameter that controls
the speed at which the prior variance on further lags is shrunk to 0.
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2. Coefficients in β relating endogenous variables to the lags of other endogenous variables. The prior
variance is then given by:(

si

s j

)(
π1π2

lagπ3

)2

(4.11.18)

where si and s j denote the residual variance of autoregressive models estimated by OLS for variables i and
j, i being the explained variable and j the explanatory variable. π2 is a cross-variable shrinkage parameter
that further reduces the prior variance.

3. Coefficients in β related to exogenous variables. The prior variance is then given by:

si(π1π4)
2 (4.11.19)

where π4 is an exogenous-specific shrinkage parameter.

The following parameter values are commonly found in the litterature: π1 = 0.1, π2 = 0.5, π3 = 1 or 2
and π4 = 100 or more.

For the above simple VAR with 2 variables and 2 lags, the prior variance settings yields:

V =



s1(π1π4)
2 0 0 0 0 0 0 0 0 0

0 (π1)
2 0 0 0 0 0 0 0 0

0 0 s1
s2
(π1π2)

2 0 0 0 0 0 0 0

0 0 0
(

π1
2π3

)2 0 0 0 0 0 0
0 0 0 0 s1

s2
(π1π2

2π3 )2 0 0 0 0 0
0 0 0 0 0 s2(π1π4)

2 0 0 0 0
0 0 0 0 0 0 s2

s1
(π1π2)

2 0 0 0
0 0 0 0 0 0 0 (π1)

2 0 0
0 0 0 0 0 0 0 0 s2

s1
(π1π2

2π3 )2 0

0 0 0 0 0 0 0 0 0
(

π1
2π3

)2


(4.11.20)

11.3 The Normal-Wishart prior

The main shortcoming of the original Minnesota prior is that it assumes that the residual variance-
covariance matrix Σ is known. This is a strong assumption, and for this reason the Minnesota prior has
been later updated to include Σ in the set of estimated parameters. The version developed in this section
closely follows the presentation of Kadiyala and Karlsson (1997)1.

The beauty of the Normal-Wishart prior resides in the existence of analytical posteriors despite the estima-
tion of multiple parameters. This comes however at the cost of a hierarachical prior, the use of matricial
distributions, and additional complexity in calculations.

In this setting, the model is thus still the VAR model introduced in (4.11.1), but the parameters of interest
are extended to θ = {β ,Σ}. Following, Bayes rule is given by:

π(β ,Σ|y) ∝ f (y|β ,Σ)π(β ,Σ) (4.11.21)

1The prior developed in this section is usually known as the “Normal-Wishart” prior. However, as it represents a late variation
of the Minnesota prior, the litterature sometimes also designates it as the “Minnesota” prior. There is thus a possible ambiguity
with the original Minnesota prior that must be settled from the context.
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The Normal-Wishart builds a hierarchical prior by assuming that the prior distribution of β depends on
the residual covariance matrix Σ. This construction is necessary to derive analytical posteriors. Following,
we state π(β ,Σ) = π(β |Σ)π(Σ) and Bayes rule (4.11.21) rewrites:

π(β ,Σ|y) ∝ f (y|β ,Σ) π(β |Σ) π(Σ) (4.11.22)

The likelihood function is still given by (4.11.6). For later calculations, it is however convenient to refor-
mulate it: after some manipulations, it can be shown (book 2, p. 55) that it rewrites as:

f (y|β ,Σ) = (2π)−nT/2|Σ|−T/2exp
(
−1

2
(β − β̂ )′ (Σ⊗ (X ′X)−1)−1 (β − β̂ )

)
× exp

(
−1

2
tr
[
Σ
−1(Y −XB̂)′(Y −XB̂)

])
(4.11.23)

with Y,X ,β , B̂ and β̂ defined as in (4.11.2) and (4.11.9). The first row of (4.11.23) can be recognised
as the kernel of a multivariate normal distribution for β , and the second row as the kernel of an inverse
Wishart distribution for Σ, both centered around maximum likelihood estimates. It then seems natural to
assume the same prior distributions for β and Σ to obtain conjugacy, and indeed this is the strategy that is
going to be applied.

For β , the multivariate normal distribution represents again a good candidate. However, we note that the
first row of (4.11.23) suggests a dependence of β on Σ through the Kronecker structure, which motivates
the use of a hierarchical prior. The prior is thus defined as a multivariate normal distribution with prior
mean b and prior variance Σ⊗W : π(β |Σ)∼ N(b,Σ⊗W ):

π(β |Σ) = (2π)−q/2|Σ⊗W |−1/2 exp
(
−1

2
(β −b)′(Σ⊗W )−1(β −b)

)
(4.11.24)

The prior mean b is defined similarly to the Minnesota prior. For the prior variance, note the difference
between W in (4.11.24) and V in the Minnesota prior (4.11.12): while V represents the full variance-
covariance matrix of β , W only represents the prior variance of a single equation in the VAR. The specific
Kronecker structure of the hierarchical prior then implies that each equation has its prior variance scaled
by the residual variance given by Σ. To keep the overall structure as close as possible to the original
Minnesota prior, W is defined as follows:

1. For the coefficients in β relating endogenous variables to their own lags or to the lags of other endoge-
nous variables, the prior variance is given by:(

1
s j

)(
π1

lagπ3

)2

(4.11.25)

where π1 and π3 are the overall tightness and lag decay parameters of the Minnesota prior, and s j denotes
again the residual variance of an autoregressive models estimated by OLS for explanatory variable j.

2. For the coefficients in β related to exogenous variables, the prior variance is given by:

(π1π4)
2 (4.11.26)

Consider again a simple VAR model with 2 variables and 2 lags. The prior matrix W then writes as:

W =



(π1π4)
2 0 0 0 0

0
(

1
s1

)
π2

1 0 0 0

0 0
(

1
s2

)
π2

1 0 0

0 0 0
(

1
s1

)(
π1
2π3

)2 0

0 0 0 0
(

1
s2

)(
π1
2π3

)2


(4.11.27)
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Following, the full prior covariance Σ⊗W matrix writes:

Σ⊗W =

σ11(π1π4)
2 0 0 0 0 σ12(π1π4)

2 0 0 0 0

0
(

σ11
s1

)
π2

1 0 0 0 0
(

σ12
s1

)
π2

1 0 0 0

0 0
(

σ11
s2

)
π2

1 0 0 0 0
(

σ12
s2

)
π2

1 0 0

0 0 0
(

σ11
s1

)(
π1
2π3

)2 0 0 0 0
(

σ12
s1

)(
π1
2π3

)2 0

0 0 0 0
(

σ11
s2

)(
π1
2π3

)2 0 0 0 0
(

σ12
s2

)(
π1
2π3

)2

σ21(π1π4)
2 0 0 0 0 σ22(π1π4)

2 0 0 0 0

0
(

σ21
s1

)
π2

1 0 0 0 0
(

σ22
s1

)
π2

1 0 0 0

0 0
(

σ21
s2

)
π2

1 0 0 0 0
(

σ22
s2

)
π2

1 0 0

0 0 0
(

σ21
s1

)(
π1
2π3

)2 0 0 0 0
(

σ22
s1

)(
π1
2π3

)2 0

0 0 0 0
(

σ21
s2

)(
π1
2π3

)2 0 0 0 0
(

σ22
s2

)(
π1
2π3

)2


(4.11.28)

Note the similarities and differences between the Minnesota covariance matrix (4.11.20) and the normal-
Wishart matrix (4.11.28). The two matrices follow the same shrinkage pattern, applying overall and
lag-specific shrinkage through the parameters π1 and π3. The specific Kronecker structure of the normal-
Wishart prior precludes however the application of the cross-variable shrinkage π2. This makes the
normal-Wishart prior comparable to a Minnesota prior with π2 = 1, a restrictive and intrinsically un-
desirable assumption. Also, we can see that the normal Whishart uses both σi j (entry i, j of Σ) and si for
scaling. This makes the prior analysis more complex as the σi j terms are not constant hyperparameters but
random variables endogenously estimated within the model. Finally, the off-diagonal terms imply that the
normal-Wishart prior generates prior covariance between the coefficients, another potentially undesirable
assumption.

It remains to define a prior distribution for the residual variance-covariance matrix Σ. The usual choice is
an inverse Wishart distribution with degrees of freedom α and scale S: π(Σ)∼ IW (α,S). Following:

π(Σ) =
2−αn/2

Γn
(

α

2

) |S|α/2|Σ|−(α+n+1)/2exp
(
−1

2
tr
{

Σ
−1S
})

(4.11.29)

Kadiyala and Karlsson (1997) suggests to define α and S as:

α = n+2 S = (α−n−1)


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sn

 (4.11.30)

where si denotes again the residual variance of an autoregressive models estimated by OLS for explanatory
variable i. The prior degrees of freedom α is set at the smallest value ensuring the existence of a prior
mean and variance for Σ, keeping the distribution well-defined but as uninformative as possible. The prior
scale is defined so that E(Σ) = diag(s1,s2, · · · ,sn), in other words to replicate the elements of a diagonal
OLS estimate.

From Bayes rule (4.11.22), we combine the likelihood function (4.11.23) with the priors (4.11.24) and
(4.11.29) to obtain:
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π(β ,Σ|y) ∝ |Σ|−T/2exp
(
−1

2
(β − β̂ )′ (Σ⊗ (X ′X)−1)−1 (β − β̂ )

)
× exp

(
−1

2
tr
[
Σ
−1(Y −XB̂)′(Y −XB̂)

])
×|Σ⊗W |−1/2 exp

(
−1

2
(β −b)′(Σ⊗W )−1(β −b)

)
×|Σ|−(α+n+1)/2exp

(
−1

2
tr
{

Σ
−1S
})

(4.11.31)

where we have relegated to the normalization constant any multiplicative term not involving β or Σ. This
joint posterior can rewrite as the product of a matrix normal distribution for B (the unvectorized form of
β in (4.11.2)) and an inverse Wishart for Σ. Indeed, it can be shown (book 2, p. 56) that:

π(B,Σ|y) ∝ |Σ|−k/2exp
(
−1

2
tr
{

Σ
−1(B′−B̄)′W̄−1(B′−B̄)

})
×|Σ|−(ᾱ+n+1)/2exp

(
−1

2
tr
{

Σ
−1S̄
})

(4.11.32)

with:

W̄ = (W−1 +X ′X)−1 B̄ = W̄ (W−1B+X ′Y ) ᾱ = α +T S̄ = S+Y ′Y +B′W−1B− B̄′W̄−1B̄

(4.11.33)

and were B denotes the prior mean vector b reorganised as a k×n matrix.

This formulation eventually makes it possible to derive the marginal posteriors by using definition 4.3.
Marginalization is easy for Σ as B only appears in the first part of the posterior:

π(Σ|y) =
∫

π(B,Σ|y)dB

∝

∫
|Σ|−k/2exp

(
−1

2
tr
{

Σ
−1(B′−B̄)′W̄−1(B′−B̄)

})
dB

×|Σ|−(ᾱ+n+1)/2exp
(
−1

2
tr
{

Σ
−1S̄
})

∝ |Σ|−(ᾱ+n+1)/2exp
(
−1

2
tr
{

Σ
−1S̄
})

(4.11.34)

where we have used the fact that the kernel of a density function integrates to a constant. This is recognized
as the kernel of an inverse Wishart distribution with degrees of freedom ᾱ and scale S̄: π(Σ|y)∼ IW (ᾱ, S̄).

Obtaining the marginal for B is trickier. As Σ appears in both terms in (4.11.32), we group them and
integrate:

π(B |y) =
∫

π(B,Σ|y)dΣ ∝

∫
|Σ|−(ᾱ+k+n+1)/2exp

(
−1

2
tr
{

Σ
−1 [S̄+(B′−B̄)′W̄−1(B′−B̄)

]})
dΣ

(4.11.35)

This is the kernel of an inverse Wishart distribution with degrees of freedom (ᾱ + k) and scale
S̄+(B′−B̄)′W̄−1(B′−B̄), and integration yields the reciprocal of the normalization constant of the distri-
bution. Hence:

π(B |y) ∝ Γn

(
ᾱ + k

2

)
2(ᾱ+k)n/2 ∣∣S̄+(B′−B̄)′W̄−1(B′−B̄)

∣∣− ᾱ+k
2

∝
∣∣S̄+(B′−B̄)′W̄−1(B′−B̄)

∣∣− ᾱ+k
2

(4.11.36)
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Finally, after some manipulations, it can be shown (book 2, p. 59) that this reformulates as:

π(B |y) ∝

∣∣∣∣In +
1
α̂

Ŝ−1(B′−B̄)′W̄−1(B′−B̄)
∣∣∣∣− α̂+k+n−1

2

(4.11.37)

with:

α̂ = α +T −n+1 Ŝ = S̄/α̂ (4.11.38)

This is the kernel of a matrix Student distribution with location B̄, scales W̄ and Ŝ, and degrees of freedom
α̂: π(B |y)∼MT (B̄,W̄ , Ŝ, α̂).

11.4 The independent prior

The normal-Wishart prior solves some of the shortcomings of the original Minnesota prior by estimating
both β and Σ. This comes however at the cost of assuming prior dependence of β on Σ, an undesirable
assumption, and fix hyperparameter value π2 = 1. This section solves this issue by proposing a prior for
β that is independent of Σ. The prior however does not admit analytical solutions and simulation methods
are required.

In this setup, the model is again the VAR model introduced in (4.11.1), and the parameters of interest are
θ = {β ,Σ}. Following, Bayes rule is still given by (4.11.21). However, assuming independence yields
π(β ,Σ) = π(β ) π(Σ) so that Bayes rule rewrites:

π(β ,Σ|y) ∝ f (y|β ,Σ)π(β )π(Σ) (4.11.39)

The likelihood function is unchanged and given by (4.11.6). The prior for β is the canonical Minnesota
prior given by (4.11.12). For Σ, we use again the inverse Wishart prior given by (4.11.29). Substituting in
Bayes rule (4.11.39) yields:

π(β ,Σ|y) |Σ̄|−1/2exp
(
−1

2
(y− X̄β )′Σ̄−1(y− X̄β )

)
× exp

(
−1

2
(β −b)′V−1(β −b)

)
×|Σ|−(α+n+1)/2exp

(
−1

2
tr
{

Σ
−1S
})

(4.11.40)

where as usual any multiplicative term not involving β or Σ has been relegated to the normalization
constant. Unlike the normal-Wishart prior, there is no way here to integrate out the joint posterior (4.11.40)
to obtain the marginal posteriors π(β |y) and π(Σ|y). The parameters β and Σ are too interwoven to permit
integration. The only possibility then consists in using simulation methods and rely on the Gibbs sampling
algorithm.

Obtain first the conditional posterior π(β |y,Σ). From definition 6.1, this is done by starting from the joint
posterior (4.11.40) and relegating to the normalization constant any multiplicative term not involving β ,
yielding:

π(β |y,Σ) ∝ exp
(
−1

2
(y− X̄β )′Σ̄−1(y− X̄β )

)
× exp

(
−1

2
(β −b)′V−1(β −b)

)
(4.11.41)
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This expression is similar to (4.11.13), and thus a similar procedure of rearranging and completing the
squares yields:

π(β |y,Σ) ∝ exp
(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
(4.11.42)

with:

V̄ = (V−1 +Σ
−1⊗X ′X)−1 b̄ = V̄ (V−1b+ vec(X ′Y Σ

−1)) (4.11.43)

This is the kernel of a multivariate normal distribution with mean b̄ and variance V̄ : π(β |y,Σ) = N(b̄,V̄ ).

Obtain next the conditional posterior π(Σ|y,β ). Start from the joint posterior (4.11.40) and relegate to the
normalization constant any multiplicative term not involving Σ to obtain:

π(Σ|y,β ) ∝ |Σ̄|−1/2exp
(
−1

2
(y− X̄β )′Σ̄−1(y− X̄β )

)
×|Σ|−(α+n+1)/2exp

(
−1

2
tr
{

Σ
−1S
})

(4.11.44)

After rearranging, it can be shown (book 2, p. 59) that this expression rewrites:

π(Σ|y,β ) ∝ |Σ|−(ᾱ+n+1)/2 exp
(
−1

2
tr
{

Σ
−1S̄
})

(4.11.45)

with:

ᾱ = α +T S̄ = S+(Y −X B)′(Y −X B) (4.11.46)

This is the kernel of an inverse Wishart distribution with degrees of freedom ᾱ and scale S̄:
π(Σ|y,β )∼ IW (ᾱ, S̄).

We can then introduce the Gibbs sampling algorithm for the independent prior.

algorithm 11.1: Gibbs sampling algorithm for the VAR model with independent prior

1. set initial values β (0) and Σ(0). We use the maximum likelihood estimates β (0) = β̂ and Σ(0) = Σ̂.

2. at iteration j, draw:

β ( j) from π(β |y,Σ)∼ N(b̄,V̄ ) with:

V̄ = (V−1 +Σ
−1⊗X ′X)−1 b̄ = V̄ (V−1b+ vec(X ′Y Σ

−1))

3. at iteration j, draw:

Σ( j) from π(Σ|y,β )∼ IW (ᾱ, S̄) with:

ᾱ = α +T S̄ = S+(Y −X B)′(Y −X B)

4. repeat until the desired number of iterations is realised.

11.5 The dummy observation prior

The Minnesota and independent priors represent standard approaches to Bayesian VAR modelling.
These two priors may however become unworkable for large models. Indeed, they involve the inver-
sion of a q×q matrix V̄ , where q = n(m+np) renders the inversion cost prohibitive when the number of
endogenous variables n gets large.

One possible solution consists in using the normal-Wishart prior which only involves inverting a k×k ma-
trix W̄ with k = m+np, and thus reduces the dimensionality of the inversion by a factor n. Banbura et al.
(2010) propose an equivalent solution that uses dummy observations to replicate the normal-Wishart
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prior while improving further the computational efficiency of the procedure. In this section we first intro-
duce the efficient prior, and then show how this prior can replicate the normal-Wishart prior by the way
of dummy observations.

So, consider the VAR model introduced in (4.11.1) with parameters of interest θ = {β ,Σ}. Bayes rule is
still given by (4.11.21), and assuming independence yields again π(β ,Σ) = π(β ) π(Σ). Thus that Bayes
rule rewrites:

π(β ,Σ|y) ∝ f (y|β ,Σ)π(β )π(Σ) (4.11.47)

For the likelihood function, it is convenient to use the normal-Wishart reformulation (4.11.23). This
likelihood function is then combined with uninformative prior for β and Σ. Specifically, we use the so-
called Jeffrey’s priors proposed by Zellner (1996):

π(β ) ∝ 1 π(Σ) ∝ |Σ|−(α+1)/2 (4.11.48)

with α defined in (4.11.30).These are the least possible informative priors2. There are two benefits from
using such priors. First, they don’t carry prior information, which is desirable since the prior beliefs will be
conveyed through the dummy observations, as detailed below. Second, these priors make the form of the
posterior extremely simple, which maximizes the computational efficiency of the model. Combining the
likelihood function (4.11.23) with the priors (4.11.48) and rearranging, the joint posterior can be shown
(book 2, p. 60) to write as:

π(β ,Σ|y) ∝ |Σ|−k/2 exp
(
−1

2
tr
{

Σ
−1(B′−B̂)′Ŵ−1(B′−B̂)

})
×|Σ|−(α̂+n+1)/2 exp

(
−1

2
tr
{

Σ
−1Ŝ
})

(4.11.49)

with:

Ŵ = (X ′X)−1
α̂ = T − k+2 Ŝ = (Y −XB̂)′(Y −XB̂) B̂ = (X ′X)−1XY (4.11.50)

Expectedly, using uninformative priors leaves the data as the only source of information and thus results
in a posterior distribution centered around maximum likelihood estimates. (4.11.49) can be seen as the
product of a matrix normal distribution for B centered around the OLS estimates B̂, and an inverse Wishart
distribution for Σ centered on the OLS sum of squared residuals Ŝ.

The marginal posteriors are derived by repeating the same procedure as for the normal-Wishart prior. The
marginal posterior π(Σ|y) obtains from (4.11.49), following the same steps as (4.11.34). This directly
yields:

π(Σ|y) ∝ |Σ|−(α̂+n+1)/2 exp
(
−1

2
tr
{

Σ
−1Ŝ
})

(4.11.51)

This the kernel of an inverse Wishart distribution with degrees of freedom α̂ and scale Ŝ:
π(Σ|y)∼ IW (α̂, Ŝ).

The marginal posterior π(B |y) obtains by following the same steps as (4.11.35) - (4.11.38). It can then be
shown (book 2, p. 60) that:

π(B |y) ∝

∣∣∣∣In +
1
α̃

S̃−1(B′−B̂)′Ŵ−1(B′−B̂)
∣∣∣∣− α̃+k+n−1

2

(4.11.52)

2The traditional definition of Jeffrey’s prior for Σ is π(Σ) ∝ |Σ|−(n+1)/2. Using instead π(Σ) ∝ |Σ|−(α+1)/2 here maintains exact
consistency with the Normal-Wishart prior.
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with:

α̃ = T −n− k+3 S̃ = Ŝ/α̃ (4.11.53)

This is the kernel of a matrix Student distribution with location B̂, scales Ŵ and S̃, and degrees of freedom
α̃: π(B |y)∼MT (B̂,Ŵ , S̃, α̃).

The efficiency of the prior becomes apparent from (4.11.49) and (4.11.52). The posterior π(B |y) only
requires the inversion of the k× k matrix Ŵ , similarly to the normal-Wishart prior. Additionaly, all the
posterior parameters only involve maximum likelihood estimates, which are the fastest to compute.

The downside of this prior is that it results in a posterior that is hardly different from a maximum likelihood
estimate. If one provides no prior information whatsoever, there is, in fact, little point in using a Bayesian
approach. To remedy this situation, one would ideally include prior beliefs in the model despite the
uninformative priors. This can be done by the way of dummy, or artifical observations. These artifical
observations are added to the actual sample observations in order to match the normal-Wishart prior
distribution.

Precisely, we define the following matrices of artificial data:

Ydum =



0m×n

H/π1

0n(p−1)×n

K


Xdum =


Im/(π1π4) 0m×np

0np×m J⊗K/π1

0n×m 0n×np


H = diag(δ1

√
s1, · · · ,δn

√
sn) J = diag(1π3 ,2π3 , · · · , pπ3) K = diag(

√
s1, · · · ,

√
sn) (4.11.54)

where δi,si,π1,π3 and π4 are defined similarly to the Minnesota prior. Yd and Xd are of dimension
(n(p+1)+m)×n and (n(p+1)+m)× (m+np), respectively. Each row of these matrices corresponds
to one dummy observation so that we create Tdum = n(p+1)+m artifical observations. The dummy ob-
servations are divided in three blocks. The first and second block implement the Minnesota prior for the
exogenous and endogenous variables respectively, while the third block corresponds to the prior belief for
the residual covariance matrix.

To understand how these observations replicate the normal-Wishart prior, consider again a simple VAR
model with 2 variables, 2 lags and a constant. Then use the stacked form (4.11.2) of the VAR, applied to
the artificial observations.

Ydum = XdumB+Edum (4.11.55)

Using the matrix definitions in (4.11.48), this yields:

0 0

δ1
√

s1
π1

0

0 δ2
√

s2
π1

0 0
0 0
√

s1 0
0

√
s2


=



1
π1π4

0 0 0 0

0
√

s11π3

π1
0 0 0

0 0
√

s21π3

π1
0 0

0 0 0
√

s12π3

π1
0

0 0 0 0
√

s22π3

π1

0 0 0 0 0
0 0 0 0 0




c11 c21
a1

11 a1
21

a1
12 a1

22
a2

11 a2
21

a2
12 a2

22

+



ε1,1 ε2,1

ε1,2 ε2,2
ε1,3 ε2,3
ε1,4 ε2,4
ε1,5 ε2,5

ε1,6 ε2,6
ε1,7 ε2,7


(4.11.56)
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Consider the first block in (4.11.56). Developing the first entry of row 1 yields:

0 = c11/π1π4 + ε1,1 ⇔ c11 =−π1 π4 ε1,1 (4.11.57)

Noting that ε1,1 ∼ N(0,σ11), one concludes:

E(c11) = 0 Var(c11) = σ11(π1 π4)
2 (4.11.58)

Similarly, consider the second block and develop the first entry of row 2 to obtain:

δ1
√

s1

π1
=

√
s11π3

π1
a1

11 + ε1,2 ⇔ a1
11 =

δ1

1π3
− π1√

s11π3
ε1,2 (4.11.59)

And from this one obtains:

E(a1
11) = δ1 Var(a1

11) =

(
σ11

s1

)
π

2
1 (4.11.60)

Proceeding the same way with the other entries of blocks 1 and 2, it is straightforward to recover the full
prior mean and variance of the normal-Wishart prior for β , as defined in (4.11.16) and (4.11.28). For Σ,
consider the third block and develop the first entry of row 6 to obtain:

√
s1 = ε1,6 =⇒ E(ε1,6) = 0 Var(ε1,6) = s1 (4.11.61)

Continuing in a similar fashion with the other entries of block 3, one recovers the normal-Wishart prior
for Σ implied by (4.11.30).

To implement the dummy observation prior, we augment the actual data with the artificial observations.
Specifically, we define:

Yd =

(
Ydum

Y

)
Xd =

(
Xdum

X

)
Td = T +Tdum (4.11.62)

The model is then estimated using the posteriors (4.11.51) and (4.11.52), except that the posterior param-
eters (4.11.50) and (4.11.53) are computed with Yd ,Xd and Td in place of Y,X and T .

11.6 A large Bayesian VAR prior

The normal-Wishart and dummy observation priors can handle large Bayesian VARs efficiently. They
suffer however from two main limits: the prior dependence of β on Σ, which represents a strong and
often unrealistic assumption; and the specific Kronecker structure of the prior, which forces to set the
cross-variable shrinkage parameter π2 in the Minnesota prior to 1, another undesirable assumption.

This final section introduces a model that circumvents these two issues and settles an efficient estimation
procedure for large Bayesian VARs while preserving a fully flexible and independent Minnesota prior.
The trick consists in estimating the model equation by equation rather than all at once, which permits
again to deal with smaller matrix inversions. Unlike the normal-Wishart and dummy observation priors
however, no analytical solutions are available in this case and simulation methods must be used.

Consider again the general VAR model (4.11.1) written in compact form (4.11.2). Because the model is
going to be estimated equation by equation, it is useful to notice that equation i of the VAR model can
obtain from column i in (4.11.2) in the following way:

Yi = Xβi +E i i = 1, · · · ,n (4.11.63)
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where Yi,βi and E i represent column i of Y,B and E such that:

Y =
(
Yi · · ·Yn

)
Yi =


yi,1
yi,2

...
yi,T

 B =
(
βi · · ·βn

)
E =

(
E i · · ·En

)
E i =


εi,1
εi,2

...
εi,T

 (4.11.64)

The residual variance-covariance matrix Σ can also be rewritten in equation-specific form by applying a
triangular decomposition (property m.30):

Φ Σ Φ
′ = Λ ⇔ Σ = Φ

−1
Λ Φ

−1′ (4.11.65)

Λ is a diagonal matrix with positive entries only, while Φ−1 (and Φ, by property m.31) are unit lower
triangular matrices. Specifically:

Λ =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn

 Φ =


1 0 · · · 0

φ21 1
. . .

...
...

. . . . . . 0
φn1 · · · φn(n−1) 1

 (4.11.66)

Λ represents the volatility components of Σ, each λi being a positive scaling term which governs the
residual variance of equation i of the model. On the other hand, Φ can be interpreted as the (inverse)
covariance component of Σ. Denoting by φi the vector of non-zero and non-one terms in row i of Φ so that
φi = (φi1 · · · φi(i−1))

′, φi then represents the covariance between the residual of equation i of the model
and the other shocks.

The parameters of interest of the model are thus the series of equation-specific VAR coefficients β1, · · · ,βn,
the equation-specific residual variance terms λ1, · · · ,λn, and the equation-specific covariance terms
φ2, · · · ,φn. Assuming independence between the βi’s, λi’s and φi’s, Bayes rule obtains directly as:

π(β ,λ ,φ |y) ∝ f (y|β ,λ ,φ)

(
n

∏
i=1

π(βi)

)(
n

∏
i=1

π(λi)

)(
n

∏
i=2

π(φi)

)
(4.11.67)

The likelihood function for the model is still given by (4.11.6). This is however a joint formulation that
cannot be exploited to estimate the model on an equation-per-equation basis. Hence, a reformulation is
required to express the likelihood function in terms of separate elements βi, λi, and φi. This is no easy
task, but after some work the likelihood function can be shown (book 2, p. 61) to rewrite as:

f (y|β ,λ ,φ) = (2π)−nT/2

(
n

∏
i=1

λ
−T/2
i

)
exp

(
−1

2

n

∑
i=1

λ
−1
i (Yi−Xβi +E−i φi)

′(Yi−Xβi +E−i φi)

)
(4.11.68)

with E−i the T × (i−1) matrix defined as:

E−i =
(
E1 E2 · · · E i−1

)
(4.11.69)

Consider now the priors for βi, i = 1, · · · ,n. The usual Minnesota prior described by equations (4.11.16)
- (4.11.20) defines the prior mean b and prior variance and V for all equations simultaneously. Here
we use the same prior but simply split b and V into their equation-specific components b1,b2, · · · ,bn

and V1,V2, · · · ,Vn. Each bi is thus a k× 1 vector of prior mean, while Vi is a k× k matrix of prior vari-
ance. Following, the prior for each βi is multivariate normal distribution with mean bi and variance Vi:
π(βi)∼ N(bi,Vi). Hence:

π(βi) = (2π)−k/2|Vi|−1/2 exp
(
−1

2
(βi−bi)

′V−1
i (βi−bi)

)
i = 1, · · · ,n (4.11.70)
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Since the λi parameters are positive terms, an inverse gamma prior is suitable. The priors are thus defined
as inverse gamma distributions with shape α/2 and scale ψ/2: π(λi)∼ IG(α/2,ψ/2). Following:

π(λi) =
(ψ/2)α/2

Γ(α/2)
λ
−α/2−1
i exp

(
− ψ

2λi

)
i = 1, · · · ,n (4.11.71)

We typically want to set a weakly informative prior about λi by setting small for the prior shape and scales
such as α = ψ = 0.0001.

Finally, for the covariance vectors φi we use a weakly informative multivariate normal distribution that
leaves the estimation burden to the data: π(φi) ∼ N(0,τIi−1), with τ some large value such as τ = 1000.
Following:

π(φi) = (2π)−(i−1)/2
τ
−(i−1)/2 exp

(
−1

2
τ
−1

φ
′
i φi

)
i = 1, · · · ,n (4.11.72)

Substituting for (4.11.68), (4.11.70), (4.11.71) and (4.11.72) in Bayes rule (4.11.67) yields:

π(β ,λ ,φ |y) ∝

(
n

∏
i=1

λ
−T/2
i

)
exp

(
−1

2

n

∑
i=1

λ
−1
i (Yi−Xβi +E−i φi)

′(Yi−Xβi +E−i φi)

)

×
n

∏
i=1

exp
(
−1

2
(βi−bi)

′V−1
i (βi−bi)

)
×

n

∏
i=1

λ
−α/2−1
i exp

(
− ψ

2λi

)
×

n

∏
i=2

exp
(
−1

2
τ
−1

φ
′
i φi

)
(4.11.73)

where as usual any multiplicative term not involving βi, λi or γi has been relegated to the normalization
constant. This joint posterior cannot be integrated out to obtain the marginal posteriors, so the Gibbs
sampling algorithm must be used.

Obtain first the conditional posterior π(βi|y,β−i)
3. From definition 6.1, this is done by starting from the

joint posterior (4.11.73) and relegating to the normalization constant any multiplicative term not involving
βi, yielding:

π(βi|y,β−i) ∝ exp
(
−1

2
λ
−1
i (Yi−Xβi +E−i φi)

′(Yi−Xβi +E−i φi)

)
× exp

(
−1

2
(βi−bi)

′V−1
i (βi−bi)

)
(4.11.74)

Rearrange and complete the squares (book 2, p. 64) to obtain:

π(βi|y,β−i) ∝ exp
(
−1

2
(βi− b̄i)

′V̄−1
i (βi− b̄i)

)
(4.11.75)

with:

V̄i = (V−1
i +λ

−1
i X ′X)−1 b̄i = V̄i(V−1

i bi +λ
−1
i X ′[Yi +E−i φi]) (4.11.76)

This is the kernel of a multivariate normal distribution with mean b̄i and variance V̄i:
π(βi|y,β−i) = N(b̄i,V̄i).

3For any parameter θi we use π(θi|θ−i) to denote the density of θi conditional on all model parameters except θi.
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(4.11.76) makes it clear why this prior is efficient: the matrix V̄i is only of dimension k× k, reducing the
inversion burden by a factor n2 compared to the independent prior where V̄ is of dimension kn× kn4.

Obtain then the conditional posterior π(λi|y,λ−i). Start from (4.11.73) and relegate to the normalization
constant any multiplicative term not involving λi to obtain:

π(λi|y,λ−i) ∝ λ
−T/2
i × exp

(
−1

2
λ
−1
i (Yi−Xβi +E−i φi)

′(Yi−Xβi +E−i φi)

)
×λ

−α/2−1
i exp

(
− ψ

2λi

)
(4.11.77)

And this immediately rewrites as:

π(λi|y,λ−i) ∝ λ
−ᾱ/2−1
i exp

(
− ψ̄i

2λi

)
(4.11.78)

with:

ᾱ = α +T ψ̄i = ψ +(E i+E−i φi)
′(E i+E−i φi) (4.11.79)

This is the kernel of an inverse gamma distribution with shape ᾱ/2 and scale ψ̄i/2:
π(λi|y,λ−i)∼ IG(ᾱ/2, ψ̄i/2).

Obtain finally the conditional posterior π(φi|y,φ−i). Start from (4.11.73) and relegate to the normalization
constant any multiplicative term not involving φi to obtain:

π(φi|y,φ−i) ∝ exp
(
−1

2
λ
−1
i (Yi−Xβi +E−i φi)

′(Yi−Xβi +E−i φi)

)
× exp

(
−1

2
τ
−1

φ
′
i φi

)
(4.11.80)

After rearranging and completing the squares (book 2, p. 66), this becomes:

π(φi|y,φ−i) ∝ exp
(
−1

2
(φi− f̄i)

′Z̄−1
i (φi− f̄i)

)
(4.11.81)

with:

Z̄i = (τ−1Ii−1 +λ
−1
i E

′
−iE−i)

−1 f̄i = Z̄i(−λ
−1
i E

′
−iE i) (4.11.82)

This is the kernel of a multivariate normal distribution with mean f̄i and variance Z̄i:
π(φi|y,φ−i) = N( f̄i, Z̄i).

4Precisely, the number of flops (basic operations) to invert a n×n matrix is of the order of O(n3). Thus inverting the n matrices
V̄i of dimension k× k requires n× k3 flops, while inverting the single nk× nk matrix V̄ from the independent prior takes n3k3

flops, that is, n2 times more operations.
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We can now introduce the Gibbs sampling algorithm for the large Bayesian VAR prior.

algorithm 11.2: Gibbs sampling algorithm for the large Bayesian VAR prior

1. set initial values β
(0)
i , λ

(0)
i and φ

(0)
i , i = 1, · · · ,n. We use maximum likelihood estimates: β

(0)
i = β̂i,

λ
(0)
i = Σ̂ii, and for φ

(0)
i we use the covariance entries of row i of Σ̂−1.

2. at iteration j, for i = 1, · · · ,n, draw:

β
( j)
i from π(βi|y,β−i) = N(b̄i,V̄i) with:

V̄i = (V−1
i +λ

−1
i X ′X)−1 b̄i = V̄i(V−1

i bi +λ
−1
i X ′[Yi +E−i φi])

Update E i and E−i.

3. at iteration j, for i = 1, · · · ,n, draw:

λ
( j)
i from π(λi|y,λ−i)∼ IG(ᾱ/2, ψ̄i/2) with:

ᾱ = α +T ψ̄i = ψ +(E i+E−i φi)
′(E i+E−i φi)

Update Λ.

4. at iteration j, for i = 2, · · · ,n, draw:

φ
( j)
i from π(φi|y,φ−i) = N( f̄i, Z̄i) with:

Z̄i = (τ−1Ii−1 +λ
−1
i E

′
−iE−i)

−1 f̄i = Z̄i(−λ
−1
i E

′
−iE i)

Update Φ.

5. at iteration j:

Obtain β ( j) from β ( j) = vec(B( j)), with B( j) = (β
( j)
1 β

( j)
2 · · · β

( j)
n )

Calculate Φ−1, then recover Σ( j) from Σ( j) = Φ−1 Λ Φ−1′.

6. repeat until the desired number of iterations is realised.



CHAPTER 12

Further aspects of Bayesian vector
autoregressions

12.1 Constrained coefficients

Sometimes, we want to constrain certain coefficients of the VAR to take predefined values. This typically
happens when economic theory provides a rationale for the value of some coefficients or equations of the
model. A classical example is the case of a VAR model that involves a large economy like the United
States, and a small open economy like Jamaica. Jamaica is certainly impacted by economic activity in the
United States (more than 40% of Jamaican exports go to the US), but the converse is not true: Jamaica
has most likely no impact on overall eonomic activity in the United States.

To represent the situation, we set a simple 2-variable VAR model with p lags and one constant, where y1,t
is GDP growth for the United States and y2,t is GDP growth for Jamaica:(

y1,t
y2,t

)
=

(
c11
c21

)
+

(
a1

11 a1
12

a1
21 a1

22

)(
y1,t−1
y2,t−1

)
+ · · ·+

(
ap

11 ap
12

ap
21 ap

22

)(
y1,t−p

y2,t−p

)
+

(
ε1,t
ε2,t

)
(4.12.1)

Assuming that Jamaican GDP growth has no effect on GDP growth in the United States is equivalent to
imposing the constraint a1

12 = · · ·= ap
12 = 0, so that none of the lags of Jamaican GDP growth ever affect

GDP growth in the United States. This is the main principle behind Granger causality, which determines
if some variable contributes overall in predicting another variable of the model.

Granger causality is just one possible application of constrained coefficients. The concept is in fact general
and can apply to any of the VAR coefficients, endogenous or exogenous. Consider the vector β of VAR
coefficients defined in (4.11.5), and assume we want to constrain coefficient βk to take value b̃k. To do
so, we simply take the prior parameters b and V of the Minnesota prior and replace the corresponding
entries bk and Vkk with b̃k and Ṽkk. By setting Ṽkk to some arbitrarily small value such as 1e−10, the
posterior distribution can be made arbitrarily tight around b̃k, effectively turning βk into an almost constant
coefficient. We may also impose a softer constraint by setting Ṽkk to a moderately small value like 0.1,
which centers the posterior around b̃k but allows for some variability.

Note finally that constrained coefficients can only be used with the Minnesota, independent and large
BVAR priors. The specific prior structure of the normal-Wishart and dummy observation priors implies
that the variance of one equation is proportional to the variance of the other equations, so that the variance
of the constrained coefficients would be replicated across all equations. This is an undesired effect that
would produce meaningless posterior estimates.
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12.2 Dummy observation extensions

Dummy observations have been introduced in section 11.5. This section shows how to extend the con-
cept to any prior distribution, following the same logic as before: create artifical observations that will
supplement the data with additional prior information through the likelihood function. We develop three
classical dummy observation extensions: the sums of coefficients approach of Doan et al. (1984); the
dummy initial observation introduced by Sims (1993); and the long run prior of Giannone et al. (2019).

These three extnesions are closely related to the concept of cointegration. They are mostly used when-
ever one estimates a VAR that includes economic variables in level. Such variables are typically I(1),
involving a non-stationary behaviour of the VAR. If instead there exists a cointegration relation between
the variables, the model will be stationary even each variable included in it is effectively I(1). The sums
of coefficients extension implements the belief of a unit root in the model; the dummy initial observation
drives the model towards cointegration; the long-run prior aims at discriminating between stationary and
nonstationary linear combinations, defining their priors accordingly.

Consider again the general VAR model (4.11.1), rewritten here for convenience:

yt =Czt +A1yt−1 + · · ·+Apyt−p + εt (4.12.2)

It can be shown (book 2, p. 67) that this model can rewrite in error correction form as:

∆yt =Czt +(A1 + · · ·+Ap− I)yt−1 +B1∆yt−1 + · · ·+Bp−1∆yt−(p−1)+ εt Bi ≡−
p

∑
j=i+1

A j (4.12.3)

Looking at the right-hand side of (4.12.3), we see the stationary terms Czt ,B1∆yt−1, · · · ,Bp−1∆yt−(p−1),
and the possibly non-stationary error correction term (A1 + · · ·+Ap− I)yt−1. If the latter is I(0), then
there exists at least one cointegration relation and the model is stationary. If instead we have:

A1 + · · ·+Ap− I = 0 (4.12.4)

Then the reformulated VAR model (4.12.3) becomes:

yt = yt−1 +Czt +B1∆yt−1 + · · ·+Bp−1∆yt−(p−1)+ εt (4.12.5)

In this case, the model has a unit root and cointegration is ruled out. The sums-of-coefficients extension
then consists in implementing the prior belief (4.12.4) by the way of dummy observations. Specifically,
we create the following dummy observations:

Ysum = diag(ȳ1/π5 · · · ȳn/π5) Xsum = (0n×m 111′p⊗Ysum) (4.12.6)

where ȳi denotes the arithmetic mean of each endogenous variable in the VAR (possibly calculated from an
initial sample of data), and π5 is a shrinkage hyperparameter specific to the sums of coefficient extension.
To see how this relates to (4.12.4), consider again a simple VAR model with 2 variables, 2 lags and
a constant. Using again the compact VAR formulation (4.11.2) with the dummy observations (4.12.6)
yields:

(
ȳ1/π5 0

0 ȳ2/π5

)
=

(
0 ȳ1/π5 0 ȳ1/π5 0
0 0 ȳ2/π5 0 ȳ2/π5

)
c11 c21
a1

11 a1
21

a1
12 a1

22
a2

11 a2
21

a2
12 a2

22

+

(
ε1,1 ε1,2
ε2,1 ε2,2

)
(4.12.7)
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Develop the top-left entry to obtain:

ȳ1/π5 = ȳ1/π5a1
11 + ȳ1/π5a2

11 + ε1,1⇒ a1
11 +a2

11−1 =−π5

ȳ1
ε1,1 (4.12.8)

And from this one obtains:

E(a1
11 +a2

11−1) = 0 Var(a1
11 +a2

11−1) =
(

π5

ȳ1

)2

σ11 (4.12.9)

This replicates the top left entry of (4.12.4). Repeating the procedure with the other dummy observations
replicates (4.12.4) as a whole. The effect of the shrinkage parameter π5 is clear from (4.12.9): the smaller
π5, the smaller the prior variance on the sums of coefficients, with π5→ ∞ implying a diffuse prior while
π5→ 0 forces a unit root in each equation.

A major limit of the sums of coefficient approach is that it eliminates the possibility of cointegration.
To remedy this issue, the dummy initial observation extension was developed. It consists in a single
artificial observation, defined as:

Yobs = (ȳ1/π6 · · · ȳn/π6) Xobs = (z̄/π6 111′p⊗Yobs) (4.12.10)

where z̄ denotes the arithmetic mean of the exogenous variables of the VAR and π6 is a shrinkage hyper-
parameter specific to the dummy initial observation extension. Considering the simple VAR model with
2-variables, 2 lags and a constant, using again the compact VAR formulation (4.11.2) with the dummy
observations (4.12.10) yields:

(
ȳ1/π6 ȳ2/π6

)
=
(
1/π6 ȳ1/π6 ȳ2/π6 ȳ1/π6 ȳ2/π6

)


c11 c21
a1

11 a1
21

a1
12 a1

22
a2

11 a2
21

a2
12 a2

22

+
(
ε1,1 ε1,2

)
(4.12.11)

Develop the first entry to obtain:

ȳ1/π6 = c11/π6 +a1
11ȳ1/π6 +a1

12ȳ2/π6 +a2
11ȳ1/π6 +a2

12ȳ2/π6 + ε1,1 (4.12.12)

And this rewrites as:

ȳ1 = c11 +a1
11ȳ1 +a1

12ȳ2 +a2
11ȳ1 +a2

12ȳ2 +π6ε1,1 (4.12.13)

Finally, calculating expectation and variance yields:

ȳ1 = c11 +a1
11ȳ1 +a1

12ȳ2 +a2
11ȳ1 +a2

12ȳ2 Var(ȳ1− c11−a1
11ȳ1−a1

12ȳ2−a2
11ȳ1−a2

12ȳ2) = π
2
6 σ11

(4.12.14)

This representation states that a no-change forecast for all variables is a good forecast for the observed
sample. In this case, either all the variables are at their unconditional mean, or the system is characterized
by the presence of an unspecified number of unit roots and the variables share a common stochastic trend.
The dummy initial observation prior is then consistent with the existence of cointegration. The shrinkage
parameter π6 controls the tightness of the prior, the left-hand-side of (4.12.14) holding exactly when
π6→ 0.

The dummy initial observation makes the model consistent with cointegration but is agnostic about the
form that cointegration may take. The long run prior constitutes an alternative that explicitely models
the possible forms of cointegration as well as other possible linear relations between the model variables.
This is done by the way of some matrix J that identifies the relevant linear combinations that may exist
between the variables entering the model, where J is squared and invertible. Different degrees of shrinkage
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are then applied to the different combinations to either favor a unit root (tight shrinkage around a sums of
coefficient equal to 0) or permit cointegration (loose shrinkage to allow for some cointegration relation).

To make things more concrete, consider again a simple VAR model with 2 variables. Let us be specific
for this example1 and assume these two variables are the log of output (y1,t = log(Yt)) and the log of real
investment (y2,t = log(It)). Economic theory suggests that output and investment are likely to share a
common trend (so y1,t + y2,t is I(1)), while the log investment-to-output ratio is stationary (so y2,t− y1,t is
I(0)). This produces the following J matrix:

J =

(
1 1
−1 1

)
(4.12.15)

Once J is defined, the following dummy observations are created:

Ylrp = diag(J ȳ/π7) J−1′ Xlrp = (0n×m 111′p⊗Ylrp) (4.12.16)

where ȳ denotes the vector of arithmetic means of the VAR variables (possibly calculated from an initial
sample of data), and π7 is a shrinkage hyperparameter specific to the long run prior extension. Using the
compact VAR formulation (4.11.2), it can be shown (book 2, p. 67) that the dummy observations imply:

(A1 + · · ·+Ap− I)J−1 =− diag(π7/Jȳ) E ′lrp (4.12.17)

Taking expectations and variance from (4.12.17) directly yields:

E
[
(A1 + · · ·+Ap− I)J−1]= 0 Var

[
vec{(A1 + · · ·+Ap− I)J−1}

]
= diag(π2

7/(Jȳ)2)⊗Σ

(4.12.18)

The matrix (A1 + · · ·+ Ap− I)J−1 captures the effect of the linear combinations defined in J on ∆yt ,
effectively setting a prior on the error correction term of the VAR. For instance, the sums of coefficients
extension can be seen as a special case of the long run prior with J = I, defining the prior belief that each
variable of the model behaves as an individual random walk. The shrinkage parameter π7 controls the
tightness of the prior on the linear combinations J, along with the additional shrinkage term Jȳ. As the
absolute value of Jiȳ (the linear combination defined by row i of J) is typically smaller for mean-reverting
combinations of yt , the prior shrinkage will be less for cointegrating relations than for other non-stationary
combinations. This mechanism automatically generates softer constraints on cointegration relations while
still maintaining the balance between stationary relations and non-stationary dynamics.

12.3 Marginal likelihood

The marginal likelihood constitutes a key element of VAR modelling as it constitutes the basis of model
comparison and hypothesis testing. The marginal likelihood cannot be computed for all VAR models, but
can be estimated for the Minnesota, normal-Wishart and independent priors.

Consider first the Minnesota prior developed in section 11.2. From definition 4.6 of the marginal
likelihood, the likelihood function (4.11.6) and the prior (4.11.12), one obtains:

f (y) =
∫

f (y|β )π(β )dβ =
∫
(2π)−nT/2|Σ̄|−1/2exp

(
−1

2
(y− X̄β )′Σ̄−1(y− X̄β )

)
× (2π)−q/2|V |−1/2 exp

(
−1

2
(β −b)′V−1(β −b)

)
dβ (4.12.19)

1This exemple is provided in Giannone et al. (2019). Researchers interested in finding suggestions of relevant restrictions for
other economic variables may also consult section 5 of the paper which provides an example with a larger model.
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Rearranging and completing the squares, this reformulates as (book 2, p. 68):

f (y) = (2π)−nT/2|Σ|−T/2|Iq +V (Σ−1⊗X ′X)|−1/2exp
(
−1

2
[
b′V−1b− b̄′V̄−1b̄+ tr(Y ′Y Σ

−1)
])

×
∫
(2π)−q/2V̄−1exp

(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
dβ (4.12.20)

The first row of (4.12.20) can get out of the integral as it does not involve β . The second row is recog-
nised as the probability density function of a multivariate normal distribution which thus integrates to 1,
eventually leaving:

f (y) = (2π)−nT/2|Σ|−T/2|Iq +V (Σ−1⊗X ′X)|−1/2exp
(
−1

2
[
b′V−1b− b̄′V̄−1b̄+ tr(Y ′Y Σ

−1)
])

(4.12.21)

Consider now the marginal likelihood for the normal-Wishart prior introduced in section 11.3. From
definition 4.6 of the marginal likelihood, the likelihood function (4.11.23) and the priors (4.11.24) and
(4.11.29), one obtains:

f (y) =
∫ ∫

(2π)−nT/2|Σ|−T/2exp
(
−1

2
(β − β̂ )′ (Σ⊗ (X ′X)−1)−1 (β − β̂ )

)
× exp

(
−1

2
tr
[
Σ
−1(Y −XB̂)′(Y −XB̂)

])
× (2π)−q/2|Σ⊗W |−1/2 exp

(
−1

2
(β −b)′(Σ⊗W )−1(β −b)

)
× 2−αn/2

Γn
(

α

2

) |S|α/2|Σ|−(α+n+1)/2exp
(
−1

2
tr
{

Σ
−1S
})

dβdΣ (4.12.22)

Rearranging and completing the squares, this reformulates as (book 2, p. 69):

f (y) = π
−nT/2 |Ik +WX ′X |−n/2 |S|−T/2|In +S−1(S̄−S)|−ᾱ/2 Γn

(
ᾱ

2

)
Γn
(

α

2

)
×
∫ ∫

(2π)−nk/2|Σ|−k/2|W̄ |−n/2exp
(
−1

2
tr
{

Σ
−1(B′−B̄)′W̄−1(B′−B̄)

})
dβ

× 2−ᾱn/2

Γn
(

ᾱ

2

) |S̄|ᾱ/2|Σ|−(ᾱ+n+1)/2exp
(
−1

2
tr
{

Σ
−1S̄
})

dΣ (4.12.23)

where B̄,W̄ , S̄ and ᾱ are defined as in (4.11.33). The inner integral with respect to β in the second row
is recognized as the density function of a matrix normal distribution which therefore integrates to 1 and
simplifies out. It then remains the outer integral with respect to Σ in the third row which is recognized as
the density function of an inverse Wishart distribution which also integrates to 1. What ultimately remains
of (4.12.23) after integration is thus simply:

f (y) = π
−nT/2 |Ik +WX ′X |−n/2 |S|−T/2|In +S−1(S̄−S)|−ᾱ/2 Γn

(
ᾱ

2

)
Γn
(

α

2

) (4.12.24)

Consider finally the independent prior developed in section 11.4. The model relies on simulation methods,
so the marginal likelihood must be computed from equation (2.6.15), namely:

f (y)≈ f (y|β ∗,Σ∗)π(β ∗,Σ∗)
π(Σ∗|y,β ∗)× 1

J ∑
J
j=1 π(β ∗|Σ( j),y)

(4.12.25)

Using the likelihood function (4.11.6), the priors (4.11.12) and (4.11.29), and the conditional posteriors
(4.11.42) and (4.11.45), it can be shown that the marginal likelihood formulates as (book 2, p. 72):
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f (y) ≈ π
−nT/2 |S|−T/2|In +S−1(S̄−S)|−ᾱ/2 Γn

(
ᾱ

2

)
Γn
(

α

2

)
×

exp
(
−1

2(β −b)′V−1(β −b)
)

1
J ∑

J
j=1 |Iq +V (Σ−1⊗X ′X)|1/2 exp

(
−1

2(β − b̄)′V̄−1(β − b̄)
) (4.12.26)

This form is similar to (4.12.24), save for the approximation of the determinant term stemming from the
Gibbs sampler.

12.4 Stationary priors

This section introduces the notions of stability and stationarity. Indeed, econometricians are often
interested in avoiding explosive behaviours for a VAR model, and this can be handled easily within a
Bayesian framework.

Consider the general VAR model (4.11.1). For our purpose, it is convenient to rewrite it as a VAR(1)
model doing the following:

yt

yt−1
...

yt−p+1

=


Czt

0
...
0

+


A1 A2 · · · Ap

In 0 · · · 0
...

. . . . . .
...

0 · · · In 0




yt−1
yt−2

...
yt−p

+


εt

0
...
0

 (4.12.27)

Or, in compact form:

γt = µt +Fγt−1 +ζt (4.12.28)

(4.12.28) is known as the companion form of the VAR model. Because it is expressed as a simple
VAR(1), it is easy to use back recursion to obtain (book 2, p. 74):

γt =
j

∑
i=0

F i
µt−i +F j

γt− j +
j

∑
i=0

F i
ζt−i (4.12.29)

We can decompose the dynamic matrix F into F = QΛQ′, where Q and Λ respectively denote the matrix
of eigenvectors and eigenvalues of F . From property m.61, if all the eigenvalues of F are smaller than 1 in
absolute value then F j → 0 as j→ ∞. Following, the impact of any past shock and exogenous regressor
in (4.12.29) eventually dies out, and so does the impact of the initial condition γt− j. In this case, the VAR
model does not display an explosive behaviour. We can define stability formally as:

definition 12.1: a VAR model is stable if the eigenvalues of the companion matrix F are all smaller
than 1 in absolute value.

In the context of VAR modelling, a closely related concept is that of stationarity :

definition 12.2: let yt be a n-dimensional random vector. yt is weakly stationary if:
E(yt) = µ for all t
E(yt −µ)(yt−i−µ) = Γi for all t and all i

In other words, a process is weakly stationary if its first and second moments are invariant to the date t.
In this case the process revolves around a constant mean with constant volatility. For a VAR model that
includes only a constant as exogenous, we have the following result:
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theorem 12.1: a VAR model that is stable is weakly stationary.

Therefore it is sufficient to examine the eigenvalues of the companion matrix F of the VAR to establish
weak stationarity. If the VAR is stationary, it has a steady-state value E(yt) = µ from definition 12.2, and
this steady-state directly obtains as (book 2, p. 74):

µ = (I−A1−·· ·−Ap)
−1C zt (4.12.30)

If the VAR includes exogenous variables other than a constant, the eigenvalues establish stability but not
stationarity. In particular, the mean of the process will be non-constant as it depends on zt .

Often, econometricians want to constrain the VAR model they estimate to be stationary. This may occur
both for technical reasons (avoid explosive behaviours) and theretical reasons (a VAR with stationary data
and stationary Minnesota prior is expected to yield a stationary posterior). In a Bayesian context, this
means that any value of the dynamic coefficients β obtained from its posterior distribution should result
in a stationary VAR model.

It turns out that inducing stationarity is straightforward in a Bayesian context. To do so, one simply
adds stationarity as a prior belief in the estimation process. Consider for instance the Minnesota prior
developed in section 11.2. The prior distribution for β is π(β )∼ N(b,V ), with density function given by
(4.11.12). To reflect the prior belief of stationarity, we implement the same prior but truncate from it any
β value that results in non-stationarity. In other words, we replace the multivariate normal prior with a
truncated multivariate normal distribution, where the truncation is perfomed on the non-stationary parts
of the distribution. This can be done simply by the way of the indicator function 1(λ (F)< 1) which takes
a value of 1 whenever the eigenvalues λ (F) of the companion matrix F are all smaller than 1 in absolute
values, and 0 otherwise. Following, the density function of the prior (4.11.12) is replaced with:

π(β ) ∝ (2π)−q/2|V |−1/2 exp
(
−1

2
(β −b)′V−1(β −b)

)
×1(λ (F)< 1) (4.12.31)

This is exactly the same prior as before save for the truncation indicator 1(λ (F) < 1). The posterior is
thus also the same and given by (4.11.14), save for the additional truncation term inherited from the prior:

π(β |y) ∝ exp
(
−1

2
(β − b̄)′V̄−1(β − b̄)

)
×1(λ (F)< 1) (4.12.32)

The truncated posterior ensures that only stationary values of β can be obtained from the posterior dis-
tribution. The logic is readily generalized to any other prior: suffice is to truncate the usual prior π(β )
with the indicator function 1(λ (F) < 1) to transmit the truncation to the posterior and ensure stationary
values. Whenever sampling is involved in the estimation process (e.g. for the independent prior), the
truncation is exerted easily by discarding any non-stationary draw obtained from the sampler and drawing
new candidates until a stationary value is obtained.

A final word of warning: stationary priors should only be used whenever it is meaningful to do so. For
instance, a model that integrates economic variables in level typically implies a non-stationary behaviour.
Forcing stationarity with a stationary prior is not only irrelevant from a theoretical point of view, but can
also produce undesired behaviours such as reversion of the model to an equilibrium value that does not
exist in the true data dynamics.
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12.5 Efficient sampling

Surprisingly, even VAR models with analytical posteriors like the Minnesota and the normal-Wishart
priors require the simulation of posterior values for β and Σ. This is because all the VAR applications
(such as predictions and impulse response functions, to be covered in chapter 13) rely on the Gibbs
sampling algorithm, which in turn uses simulated posterior draws for β and Σ. It is thus important to
sample efficiently in order to avoid computational bottlenecks during the estimation process.

The independent and large Bayesian VAR priors make heavy use of the multivariate normal distribution
in algorithms 11.1 and 11.2. For this reason, the efficient sampling algorithm 9.4 must be used to generate
the multivariate normal draws with maximum efficiency.

The normal-Wishart and dummy observation priors produce analytical solutions: a matrix Student
posterior for β , and an inverse Wishart distribution for Σ. These analytical distributions are useful to
calculate posterior moments like the mean and variance, but sampling from the matrix Student distribu-
tion is inefficient as it requires an additional draw from the inverse Wishart distribution. To avoid this,
a faster alternative consists in sampling β from its conditional posterior. Indeed, definition 2.12 implies
that π(β ,Σ|y) = π(Σ|y)π(β |y,Σ). In other words, to obtain a draw from the joint posterior π(β ,Σ|y), one
may first sample Σ from the unconditional posterior π(Σ|y), then sample β from the conditional posterior
π(β |y,Σ).

To obtain π(β |y,Σ), we follow definition 6.1 and start from the joint posterior (4.11.31), then relegate to
the normalization constant any term not involving β . This yields:

π(β |y,Σ) ∝ exp
(
−1

2
(β − β̂ )′ (Σ⊗ (X ′X)−1)−1 (β − β̂ )

)
× exp

(
−1

2
(β −b)′(Σ⊗W )−1(β −b)

)
(4.12.33)

After some manipulations (book 2, p. 74):, this rewrites as:

π(β |y,Σ) ∝ exp
(
−1

2
tr{Σ−1(B−B̄)′W̄−1(B−B̄)}

)
(4.12.34)

with W̄ and B̄ defined as in (4.11.33).This is the kernel of a matrix normal distribution with location B̄ and
shapes W̄ and Σ: π(β |y,Σ) ∼MN(B̄,W̄ ,Σ). This solution is more efficient as it only requires one single
inverse Wishart draw from π(Σ|y), the generation of matrix normal random numbers involving no inverse
Wishart sampling.



CHAPTER 13

Bayesian VAR: basic applications

13.1 Impulse-response function

A major object of interest in VAR modelling is the so-called impulse-response function. Fundamentally,
the impulse-response function measures the effect of a unit shock εt on the current and future values of
the model yt , yt+1, yt+2. It thus describes the dynamics of the shock transmission over time on the VAR
model. To define formally the impulse-response function, we first state a classical result in VAR analysis:

theorem 13.1: (Wold theorem) any weakly stationary VAR model can be expressed as:
yt = A(L)−1Czt +Φ0εt +Φ1εt−1 +Φ2εt−2 . . .

where A(L)−1 denotes the inverse lag polynomial of the VAR coefficients1. The Wold theorem fundamen-
tally states that any stationary VAR model can be rewritten as a constant plus an infinite order moving
average process. Each Φh is a n×n matrix of coefficients that has the interpretation:

Φh =
∂yt+h

∂εt
with Φh =


φ h

11 φ h
12 · · · φ h

1n
φ h

21 φ h
22 · · · φ h

2n
...

...
. . .

...
φ h

n1 φ h
n2 · · · φ h

nn

 so that φ
h
i j =

∂yi,t+h

∂ε j,t
(4.13.1)

Thus, φ h
i j identifies the effect of a one-unit increase in ε j,t on the variable yi,t+h, keeping all other innova-

tions at all dates null. The series Φ0,Φ1,Φ2 · · · is formally known as the impulse-response function of
the VAR model.

There are several ways to estimate the impulse-response function. A simple, brute force method consists
in using the companion form (4.12.28). Indeed, it follows directly from (4.12.29) that ∂γt+h/∂ζt = Fh.
Since yt+h and εt represent respectively the first n rows of γt+h and ζt , one can obtain Φh by simply
retaining the first n rows and columns of Fh.

A more efficient way consists in obtaining the impulse-response function by numerical simulation. To do
so, we may use the general VAR formulation (4.11.1), or better, its compact form equivalent (4.11.2). To
simulate the impulse, implement recursively the following system for h = 0,1,2, . . . :

Yh = XhB+Eh (4.13.2)

with:

Y−1 = · · ·= Y−p = 0n×n Xh =
(
0n×m Yh−1 · · · Yh−p

)
E0 = In Eh = 0n×n for h 6= 0

(4.13.3)

1The lag polynomial introduced here is a multivariate generalization of the scalar lag polynomial defined in (3.9.56). Readers
unfamiliar with the notion of inverse lag polynomial may safely skip this specific point and treat A(L)−1Czt as some constant.
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The matrix E0 = In implements the unit shocks a period t, and the system is then simulated for periods
t, t +1, t +2 . . . The impulse-response function directly obtains from:

Φh = Y ′h (4.13.4)

In a Bayesian context, we must account for the fact that the impulse-response function Φ0,Φ1,Φ2 . . . are
not constant parameters but random variables. Fortunately, it is easy to derive their posterior distributions
by integrating them into a Gibbs sampler framework. Formally, we can derive a numerical approximation
of the posterior distributions from the following algorithm:

algorithm 13.1: Gibbs sampling algorithm for the impulse-response function

1. at iteration j, draw β ( j) from its posterior distributions. Recycle the values obtained from the jth

iteration of the Gibbs sampling algorithm. Reshape it into B( j).

2. simulate the impulse-response function Φ
( j)
0 ,Φ

( j)
1 ,Φ

( j)
2 . . . from (4.13.2)-(4.13.4).

3. repeat until the desired number of iterations is realised.

13.2 Structural identification

Impulse-response functions aim at answering questions of the kind: “What is the effect of a unit shock
in εi,t , everything else being held constant?”. However, the shocks we are dealing with are typically
correlated, i.e. the variance-covariance matrix of the residuals Σ is typically not diagonal (see equation
(4.11.1)). As a consequence, the regular impulse-response functions may not constitute reliable estimates
of the impact of a shock considered in isolation.

To solve this problem, we need to introduce the concept of structural VAR:

definition 13.1: a structural VAR is a model of the form:
H0yt = Gzt +H1yt−1 + · · ·+Hpyt−p +ξt ξt ∼ N(0,Γ) t = 1, · · · ,T

There are two main differences between a structural VAR and the regular VAR (4.11.1) (the latter is
also known as a reduced-form VAR). First, the structural VAR allows for contemporaneous interractions
between the endogenous variables through the matrix H0. Second, and most importantly, the variance-
covariance matrix Γ is assumed to be diagonal so that the structural shocks ξt are uncorrelated. Following,
the impulse-response functions produced by a structural VAR are meaningful, unlike those obtained from
a reduced-form VAR.

It is straightforward to obtain a correspondance between a structural and a reduced-from VAR. Multiply
both sides of the structural VAR in definition 13.1 by H ≡ H−1

0 to obtain:

yt = H Gzt +H H1yt−1 + · · ·+H Hpyt−p +H ξt (4.13.5)

Comparing with the reduced-form VAR (4.11.1), one directly obtains:

C = HG Ai = HHi εt = Hξt (4.13.6)

Also, another important relation obtains by noting that Σ = E(εtε
′
t ) = HE(ξtξ

′
t )H

′ = HΓH ′, so that:

Σ = HΓH ′ (4.13.7)
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The matrix H is known as a structural identification matrix. It permits the identification of the
structural shocks ξt from the reduced-form shocks εt , and creates a correspondance between the reduced-
form covariance matrix Σ and the structural shock covariance matrix Γ.

It is also straightforward to obtain the structural impulse response function from the structural identifica-
tion matrix H. Rewrite the Wold representation in theorem 13.1 as:

yt = A(L)−1Czt +Φ0HH−1
εt +Φ1HH−1

εt−1 +Φ2HH−1
εt−2 . . . (4.13.8)

Or, using (4.13.6):

yt = A(L)−1Czt +Ψ0ξt +Ψ1ξt−1 +Ψ2ξt−2 . . . Ψh ≡ΦhH ξt ≡ H−1
εt (4.13.9)

The series Ψ0,Ψ1,Ψ2 . . . represents the structural impulse-response function of the model.

It should be clear that the structural identification matrix H constitutes the key element for structural
identification. Once H is known, one can estimate a standard reduced form VAR, and then use H to
recover the structural shocks ξt , the structural covariance matrix Γ, and the structural impulse-response
function Ψ0,Ψ1,Ψ2 . . .. However, if a structural VAR uniquely defines the corresponding reduced-form
VAR, the converse is not true. For a given reduced-form VAR, there exist in fact an infinite number of
matrices H that satisfy (4.13.6) and (4.13.7), and thus an infinite number of possible structural VARs.
Structural identification must then be conducted by reducing the set of possible candidates H with some
economic theory.

Structural identification represents in fact a large field of research in economics, and finding a relevant
matrix H can go far in sophistication. We cover some advanced approaches in chapter 14, but for now
we limit the analysis to the introduction of two simple and classical identification strategies: Cholesky
factorization, and triangular factorization.

With Cholesky factorization, the structural shocks are assumed to have unit variance, which implies that
Γ = In. Following, (4.13.7) simplifies to:

Σ = HH ′ (4.13.10)

Typically, we want to use an identification scheme that uniquely defines the structural matrix H. Because
H is n× n, it has n2 elements to estimate and thus n2 constraints on H are required to ensure a unique
identification. (4.13.10) provides n(n+ 1)/2 restrictions, roughly half of the necessary restrictions. The
remaining n(n−1)/2 restrictions are obtained by assuming that H is lower triangular, i.e. that the entries
above its main diagonal are equal to 0.

To see what this implies in terms of economic interpretation, note that Ψ0 = H and so the structural Wold
representation (4.13.9) writes yt = A(L)−1Czt +Hξt +Ψ1ξt−1 +Ψ2ξt−2 . . .

2 Considering only the impact
of ξt in the representation, we obtain:

y1,t
y2,t

...
yn,t

= · · ·+


h11 0 · · · 0
h21 h22 · · · 0

...
...

. . .
...

hn1 hn2 · · · hnn




ξ1,t
ξ2,t

...
ξn,t

+ · · · (4.13.11)

Therefore, y1,t is contemporaneously impacted by ξ1,t , but not by the other structural shocks ξ2,t , · · · ,ξn,t .
y2,t is contemporaneously affected by ξ1,t and ξ2,t , but not by ξ3,t , · · · ,ξn,t , and so on. This kind of
structural identification scheme thus implements short-term restrictions by stating that some of the
structural shocks have no instantaneous effect on some of the model variables. It should also be clear from
(4.13.11) that the ordering of the variables in the VAR becomes important since different

2 Indeed, Φ0 = In by construction. Following, (4.13.9) implies Ψ0 = Φ0H = InH = H.
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restrictions apply to different variables. It is thus necessary to find a variable ordering that yields
meaningful economic interpretation given the implied set of short-term restrictions.

With this setting, the structural identification exercise thus consists in finding a structural idenfication
matrix H such that Σ = HH ′, with H some lower triangular matrix. But this is precisely the definition
of the Cholesky factor of Σ, and by property m.29, this factorization exists and is unique. Therefore,
the structural VAR can be recovered directly from the reduced-form VAR, obtaining H trivially from
Cholesky factorization of Σ.

In a Bayesian context, the structural impulse-response functions Ψ0,Ψ1,Ψ2 . . . are also treated as random
variables. It is straightforward to expand the Gibbs sampler methodology to structural VAR identification
with Cholesky factorization, as summarized in the following algorithm:

algorithm 13.2: Gibbs sampling algorithm for structural identification, Cholesky factorization

1. at iteration j, draw β ( j) and Σ( j) from their posterior distributions. Recycle the values obtained from
the jth iteration of the Gibbs sampling algorithm.

2. simulate the impulse-response function Φ
( j)
0 ,Φ

( j)
1 ,Φ

( j)
2 . . . from (4.13.2)-(4.13.4).

3. obtain the structural matrix H( j) from the Cholesky factor of Σ( j).

4. calculate the structural impulse-response function Ψ
( j)
0 ,Ψ

( j)
1 ,Ψ

( j)
2 . . . from Ψ

( j)
h = Φ

( j)
h H( j).

5. repeat until the desired number of iterations is realised.

The assumption that the structural shocks have unit variance is sometimes too restrictive. In this case,
one may instead carry structural identification by triangular factorization. With this scheme, the structural
variance matrix Γ is diagonal but not necessarily identity. This creates n additional free parameters to
estimate, and thus requires n additional constraints to ensure unicity of the identification. This is done by
assuming that H is lower triangular, and additionally has its main diagonal made of ones. This creates
short-term restrictions similar to the Cholesky structural identification, but imposes the further constraint
of unit contemporaneous responses of the variables to their own structural shocks.

Structural identification thus amounts to finding a diagonal matrix Γ and a unit lower triangular matrix
H such that Σ = HΓH ′. This is the definition of triangular factorization, and by property m.30 this fac-
torization exists and is unique. Following, the Gibbs sampling algorithm can be directly adapted to the
triangular factorization setting to yield:

algorithm 13.3: Gibbs sampling algorithm for structural identification, triangular factorization

1. at iteration j, draw β ( j) and Σ( j) from their posterior distributions. Recycle the values obtained from
the jth iteration of the Gibbs sampling algorithm.

2. simulate the impulse-response function Φ
( j)
0 ,Φ

( j)
1 ,Φ

( j)
2 . . . from (4.13.2)-(4.13.4).

3. obtain the variance matrix Γ( j) and the structural matrix H( j) from triangular factorization of Σ( j).

4. calculate the structural impulse-response function Ψ
( j)
0 ,Ψ

( j)
1 ,Ψ

( j)
2 . . . from Ψ

( j)
h = Φ

( j)
h H( j).

5. repeat until the desired number of iterations is realised.

Cholesky factorization and triangular factorizatin produce similar impulse-response function, up to a
scaling term. With triangular factorization, ψh

i j provides the response to a unit shock (a structural shock
ξ j,t of size 1), while with Cholesky factorization ψh

i j gives the response to a shock of one standard
deviation (i.e. a structural shock ξ j,t of size √γ j, where γ j is the jth diagonal term of Γ as obtained
with triangular factorization).
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13.3 Prediction

Prediction is a central concern in VAR modelling. It consists in predicting ŷT+1, ŷT+2, · · · , ŷT+h from a
VAR model estimated with the sample y1,y2, · · · ,yT . In a frequentist framework, computing forecasts
involves the calculation of a minimum Mean Squared Error predictor. It can be shown (see e.g. Lütkepohl
(2005), chapter 2) that the forecasts can be obtained recursively, taking conditional expectations of the
general VAR formulation (4.11.1):

ŷT+1 =CẑT+1 +A1yT + · · ·+ApyT−p+1

ŷT+2 =CẑT+2 +A1ŷT+1 + · · ·+ApyT−p+2

... (4.13.12)

A confidence interval for ŷT+h can then be obtained from:

ŷT+h±Nα/2 sh sh =
√

diag(Qh) Qh = Qh−1 +ΦhΣ̂Φ
′
h Q1 = Σ̂ (4.13.13)

where Φh denotes the impulse response function matrix in (4.13.1).

In a Bayesian context, forecasts are formed using the posterior predictive distribution. As we want to
predict ŷT+1, ŷT+2, · · · , ŷT+h, the predictive distribution is given by:

f (ŷT+1, · · · , ŷT+h|y) =
∫

f (ŷT+1, · · · , ŷT+h|y,θ) π(θ |y) dθ (4.13.14)

Unlike the linear regression model however, analytical expressions are generally unavailable for the pre-
dictive distribution when predictions are considered beyond one period. Therefore, one must compute
(4.13.14) by the way of simulation methods, which is easily done from algorithm 6.3. Noting that
θ = {β ,Σ} for Bayesian VAR models, it is straightforward to adapt the algorithm that becomes:

algorithm 13.4: Gibbs sampling algorithm for the posterior predictive distribution

1. at iteration j, draw β ( j) and Σ( j) from their posterior distributions. Recycle the values obtained from
the jth iteration of the Gibbs sampling algorithm. Recover C( j),A( j)

1 , · · · ,A( j)
p from β ( j).

2. draw εT+1, · · · ,εT+h from εt ∼ N(0,Σ).

3. generate recursively ŷT+1, · · · , ŷT+h from:
ŷ( j)

T+1 =CẑT+1 +A1yT + · · ·+ApyT+1−p + εT+1

ŷ( j)
T+2 =CẑT+2 +A1ŷT+1 + · · ·+ApyT+2−p + εT+2

...
ŷ( j)

T+h =CẑT+h +A1ŷT+h−1 + · · ·+ApŷT+h−p + εT+h

4. marginalize, that is, discard β ( j) and Σ( j) and keep only the predictions ŷ( j)
T+1, · · · , ŷ

( j)
T+h.

5. repeat until the desired number of iterations is realised.

Two points are worth noting with algorithm 13.4. First, the algorithm builds recursively, and thus involves
both the observed values yT ,yT−1, · · · and the predicted values ŷT+1, ŷT+2, . . . in the construction of the
forecasts. Second, the forecasts involve the predicted values for the exogenous ẑT+1, · · · , ẑT+h. As these
predicted values are not obtained from the model, they need to be exogenously supplied by the researcher.

Once predictions are obtained, forecast evaluation criteria can be calculated to assess the predictive per-
formance of the model. Most formulas presented here are direct adaptations of the regression formulas,
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adapted to VAR modelling. We start with classic in-sample quantities. Denote by B̂ the posterior me-
dian of B, and by Ê the resulting median residual obtained from Ê = Y −XB̂, using the compact VAR
formulation (4.11.2). The following quantities obtain:

SSR = diag(Ê ′Ê) T SS = diag((Y −Ȳ )′(Y −Ȳ )) R2 = 1− SSR
T SS

adj-R2 = 1− (1−R2)
T −1
T − k

(4.13.15)

where the results are n-dimensional vectors, and operations are conducted elementwise. For the max-
imum likelihood VAR model, additional in-sample lag criteria are provided by the Akaike Information
Criterion (AIC), the Schwarz’s Bayesian Information Criterion (BIC), and the Hannan-Quinn criterion
(HQ), respectively defined as:

AIC = 2q/T −2 L̂/T BIC = q log(T )/T −2 L̂/T HQ = 2q log(log(T ))/T −2 L̂/T

(4.13.16)

with L̂ the log-likelihood of the model defined in (3.9.6), evaluated at the maximum likelihood estimates
β̂ and σ̂ . After some manipulations (book 2, p. 75), these criteria rewrite as:

AIC = 2q/T + log(|Σ̂|) BIC = q log(T )/T + log(|Σ̂|) HQ = 2q log(log(T ))/T + log(|Σ̂|)
(4.13.17)

Standard out-of-sample forecast evaluation criteria can be readily adapted to VAR models, such as the
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE). For a forecast up to yT+h, they are defined as:

RMSE =

√√√√1
h

h

∑
j=1

(yi,T+ j− ŷi,T+ j)2 MAE =
1
h

h

∑
j=1
|yi,T+ j− ŷi,T+ j| MAPE =

100
h

h

∑
j=1

∣∣∣∣yi,T+ j− ŷi,T+ j

yi,T+ j

∣∣∣∣
(4.13.18)

where yi,T+ j and ŷi,T+ j respectively denote the actual and predicted values for variable i at period T + j.
Similarly, The Theil inequality coefficient (Theil-U) and bias are given by:

Theil-U =

√
∑

h
j=1(yi,T+ j− ŷi,T+ j)2√

∑
h
j=1 y2

i,T+ j +
√

∑
h
j=1 ŷ2

i,T+ j

bias =
∑

h
j=1 yi,T+ j− ŷi,T+ j

∑
h
j=1 |yi,T+ j− ŷi,T+ j|

(4.13.19)

The log score (LogS) and the continuous ranked probability score (CRPS) are defined as:

LogS =− log( f̂ (yi,T+ j)) CRPS =
∫ +∞

−∞

[
F̂(z)−1(yi,T+ j ≤ z)

]2 dz (4.13.20)

For the log score, we follow the strategy suggested by Warne et al. (2013) and use a Gaussian approxi-
mation of the posterior predictive distribution, noting that predictive distributions are typically close to a
Normal distribution. In this case, the log score is given by:

LogS =− log(φ̂(yi,T+ j)) (4.13.21)

where φ̂ denotes the density function of the normal distribution with mean µ̂ and variance σ̂ calculated
from the Gibbs sampler draws of the empirical predictive density for variable i at period T + j. To evaluate
the log score for all prediction periods jointly, we treat ŷi,T+1, · · · , ŷi,T+h as a joint multivariate normal
distribution and evaluate their empirical mean and variance-covariance matrix from the Gibbs sampler
draws, then evaluate the log score from the multivariate normal density.
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For the CRPS, we follow again Krüger et al. (2017) and use the consistent approximation:

CRPS≈ 1
J

J

∑
j=1
|ŷ( j)

i,t+h− yi,t+h|−
1

2 J2

J

∑
j=1

J

∑
k=1
|ŷ( j)

i,t+h− ŷ(k)i,t+h| (4.13.22)

A joint CRPS over all prediction periods can be obtained as the sum of the individual CRPS for
ŷi,T+1, · · · , ŷi,T+h.

13.4 Forecast error variance decomposition

Another useful application related to prediction is the so-called forecast error variance decomposition. It
determines the contribution of each shock of the model to the forecast error, the unpredictable component
of the forecast. It thus explains which shocks matter to explain a variable at different forecast horizons.

Assume we want to generate a prediction for period t + h. To do so we start from the structural Wold
representation (4.13.9), evaluated at t +h.

yt+h = A(L)−1Czt+h +Ψ0ξt+h +Ψ1ξt+h−1 +Ψ2ξt+h−2 . . . (4.13.23)

Considering a prediction made at period t, this expression can be separated into three components:

yt+h = A(L)−1Czt+h +
∞

∑
i=0

Ψh+iξt−i +
h−1

∑
i=0

Ψiξt+h−i (4.13.24)

On the right-hand side, the first term represents the exogenous component at T +h (assumed to be known
for prediction pruposes), while the second term contains the known present and past shocks. The final
term contains the future shocks. Following, the forecast for period t +h is given by:

E(yt+h) = A(L)−1Czt+h +
∞

∑
i=0

Ψh+iξt−i (4.13.25)

And thus the forecast error is given by:

yt+h−E(yt+h) =
h−1

∑
i=0

Ψiξt+h−i (4.13.26)

Developing:
y1,t+h−E(y1,t+h)
y2,t+h−E(y2,t+h)

...
yn,t+h−E(yn,t+h)

=


ψ0

11 ψ0
12 · · · ψ0

1n
ψ0

21 ψ0
22 · · · ψ0

2n
...

...
. . .

...
ψ0

n1 ψ0
n2 · · · ψ0

nn




ξ1,t+h
ξ2,t+h

...
ξn,t+h

+


ψ1

11 ψ1
12 · · · ψ1

1n
ψ1

21 ψ1
22 · · · ψ1

2n
...

...
. . .

...
ψ1

n1 ψ1
n2 · · · ψ1

nn




ξ1,t+h−1
ξ2,t+h−1

...
ξn,t+h−1

+ · · ·

(4.13.27)

So the forecast error for variable i rewrites as:

yi,t+h−E(yi,t+h) =
h−1

∑
j=0

ψ
j

i1ξ1,t+h− j +
h−1

∑
j=0

ψ
j

i2ξ2,t+h− j + · · ·+
h−1

∑
j=0

ψ
j

inξn,t+h− j (4.13.28)

Denote the variance of this forecast error by σyi(h), and denote by γ1, · · · ,γn the variances of the structural
shocks found on the diagonal of Γ. Then taking variances on both sides of (4.13.28) and noting that no
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covariances are implid since the structural shocks are uncorrelated, one obtains:

σyi(h) = γ1

h−1

∑
j=0

(ψ j
i1)

2 + γ2

h−1

∑
j=0

(ψ j
i2)

2 + · · ·+ γn

h−1

∑
j=0

(ψ j
in)

2 (4.13.29)

Eventually, divide both sides by σyi(h) to obtain:

1 =
γ1

σyi(h)

h−1

∑
j=0

(ψ j
i1)

2

︸ ︷︷ ︸
Contribution of shock 1

in forecast error

+
γ2

σyi(h)

h−1

∑
j=0

(ψ j
i2)

2

︸ ︷︷ ︸
Contribution of shock 2

in forecast error

+ · · ·+ γn

σyi(h)

h−1

∑
j=0

(ψ j
in)

2

︸ ︷︷ ︸
Contribution of shock n

in forecast error

(4.13.30)

Or:

1 = σ
1
yi
(h)+σ

2
yi
(h)+ · · ·+σ

n
yi
(h) σ

k
yi
(h)≡ γk

σyi(h)

h−1

∑
j=0

(ψ j
ik)

2 k = 1, · · · ,n (4.13.31)

σ1
yi
(h), · · · ,σn

yi
(h) constitute the forecast error variance decomposition of the model. σ k

yi
(h) represents

the proportion of forecast error variance of variable i due to structural shock k at horizon t + h. It thus
indicates the importance of shock k to explain (or predict) variable i at the forecast horizon t+h. Typically,
the forecast error variance of a variable is explained by its own shocks at short horizons and by shocks to
other variables at longer horizons.

In a Bayesian context the parameters σ1
yi
(h), · · · ,σn

yi
(h) are treated as random variables. Since the pos-

teriors don’t have analytical solutions, estimation must be integrated to Gibbs sampler framework. This
yields the following algorithm:

algorithm 13.5: Gibbs sampling algorithm for forecast error variance decomposition

1. at iteration j, draw β ( j) and Σ( j) from their posterior distributions. Recycle the values obtained from
the jth iteration of the Gibbs sampling algorithm.

2. simulate the impulse-response function Φ
( j)
0 ,Φ

( j)
1 ,Φ

( j)
2 . . . from (4.13.2)-(4.13.4).

3. obtain the structural matrix H( j) and the structural variance matrix Γ( j) from Σ( j).

4. calculate the structural impulse-response function Ψ
( j)
0 ,Ψ

( j)
1 ,Ψ

( j)
2 . . . from Ψ

( j)
h = Φ

( j)
h H( j).

5. calculate σ1
yi
(h)( j), · · · ,σn

yi
(h)( j) from σ k

yi
(h)( j) = γk

σyi (h)
∑

h−1
j=0(ψ

j
ik)

2

6. repeat until the desired number of iterations is realised.

13.5 Historical decomposition

Forecast error variance decomposition is concerned with the contribution of structural shocks for predic-
tions. It may also be interesting to establish the contribution of the structural shocks in the past, over the
observed data sample. This is the purpose of historical decomposition.

Consider again the structural Wold representation (4.13.9), considered at any sample period t:

yt = A(L)−1Czt +Ψ0ξt +Ψ1ξt−1 +Ψ2ξt−2 + · · · t = 1, · · · ,T (4.13.32)

The right-hand side can be decomposed into two components. The first term represents the determin-
istic part of the model, while the remaining terms give the contribution of the unpredictable structural



13.5. HISTORICAL DECOMPOSITION 131

disturbances affecting the dynamics of the model. Using the notation dt ≡ A(L)−1Czt to designate the
deterministic part of the model, the developed representation writes:

y1,t
y2,t

...
yn,t

=


d1,t
d2,t

...
dn,t

+


ψ0

11 ψ0
12 · · · ψ0

1n
ψ0

21 ψ0
22 · · · ψ0

2n
...

...
. . .

...
ψ0

n1 ψ0
n2 · · · ψ0

nn




ξ1,t
ξ2,t

...
ξn,t

+


ψ1

11 ψ1
12 · · · ψ1

1n
ψ1

21 ψ1
22 · · · ψ1

2n
...

...
. . .

...
ψ1

n1 ψ1
n2 · · · ψ1

nn




ξ1,t−1
ξ2,t−1

...
ξn,t−1

+ · · ·

(4.13.33)

Following, we can rewrite the representation by grouping the shocks as:

yi,t = di,t +
∞

∑
j=0

ψ
j

i1ξ1,t− j︸ ︷︷ ︸
Historical contribution

of shock 1

+
∞

∑
j=0

ψ
j

i2ξ2,t− j︸ ︷︷ ︸
Historical contribution

of shock 2

+ · · ·+
∞

∑
j=0

ψ
j

inξn,t− j︸ ︷︷ ︸
Historical contribution

of shock n

(4.13.34)

Or:

yi,t = di,t +hi1,t +hi2,t + · · ·+hin,t hik,t ≡
∞

∑
j=0

ψ
j

ikξk,t− j (4.13.35)

Representation (4.13.35) provides the historical decomposition of the model. Each hik,t on the right-
hand side represents the historical contributions of structural shock k of the model in the historical value
of variable i. Note that the summations are of infinite order. In practice however the sample used for
estimation is of finite size and comprise only T observations. Therefore for any t = 1, · · · ,T , the historical
decomposition actually obtains from:

hik,t =
t−1

∑
j=0

ψ
j

ikξk,t− j (4.13.36)

(4.13.36) implies that for small t, only few terms of the infinite order structural Wold representation are
effectively involved in the calculation of the historical decomposition. This implies that historical decom-
position is typically more accurately estimated at the end of the sample, while only rough approximations
are obtained for the first sample periods.

In a Bayesian context the structural Wold representation parameters are random variables, so historical
decomposition must be as usual integrated to Gibbs sampler framework. This yields the following algo-
rithm:

algorithm 13.6: Gibbs sampling algorithm for historical decomposition

1. at iteration j, draw β ( j) and Σ( j) from their posterior distributions. Recycle the values obtained from
the jth iteration of the Gibbs sampling algorithm.

2. simulate the impulse-response function Φ
( j)
0 ,Φ

( j)
1 ,Φ

( j)
2 . . . from (4.13.2)-(4.13.4).

3. obtain the structural matrix H( j) from Σ( j).

4. calculate the structural impulse-response function Ψ
( j)
0 ,Ψ

( j)
1 ,Ψ

( j)
2 . . . from Ψ

( j)
h = Φ

( j)
h H.

5. obtain the structural shocks ξ
( j)
t ,ξ

( j)
t−1,ξ

( j)
t−2 . . . from ξ

( j)
t = H−1ε

( j)
t .

6. calculate h( j)
i1,t , · · · ,h

( j)
in,t from h( j)

ik,t = ∑
t−1
j=0 ψ

j
ikξk,t− j.

7. calculate d( j)
i,t = yi,t −hi1,t −hi2,t −·· ·−hin,t .

8. repeat until the desired number of iterations is realised.
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13.6 Application: how well does the IS-LM model fit postwar E.U. data?

In a seminal paper, Gali (1992) investigates whether postwar U.S. data supports the stylized predictions
of the canonical IS-LM model. To do so the study estimates a simple, four-variable VAR model, then
confronts its empirical results to the following stylized IS-LM predictions:

1. Positive supply shocks, real demand shocks and money supply shocks have (at least) a transitory
positive effect on GDP growth.

2. Positive supply and real demand shocks both result in higher GDP growth, but have opposite effects on
inflation.

3. Short-term economic fluctuations are mostly driven by real demand and monetary shocks, while supply
shocks take over in the long run.

4. The short-term interest rate declines after a positive money supply shock, but increases following a
positive money demand shock.

5. Monetary shocks are transmitted to the real sector through their impacts on the interest rate.

The paper finds that the estimated VAR overall agrees with these stylized facts, up to a few oddities such
as the prevalence of supply shocks in the variation of output at short horizon.

This section replicates the same exercise, using this time Euro Area data instead of U.S. data. The VAR
model includes the same four variables as in Gali (1992): real GDP growth, broad money m3 as yearly
growth rate, the 3-month interest rate, and CPI inflation. The data comes from Eurostats, the OECD and
the European Central Bank. The sample is quarterly and covers years 1974 to 2024, which is substantially
longer than its U.S. counterpart. Whenever data is missing for early years, it is supplemented by the
excellent Area-Wide Model dataset of Fagan et al. (2001). The dataset is represented in Figure 13.1:

Figure 13.1: IS-LM dataset for the Euro Area
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This section focuses on two aspects. First, it estimates a simple Bayesian VAR model similar to that of Gali
(1992), and tries to establish whether the IS-LM stylized facts are also validated by Euro Area data. It does
so by the way of a simple structural identification scheme and the analysis of impulse response function,
forecast error variance decomposition and historical decomposition. Second, using the framework as a
pretext, it tries to establish whether Bayesian VAR models perform better than their maximum likelihood
counterpart in terms of predictive performance. To do so an expanding window exercise is conducted,
with forecast evaluation at short and medium horizons.

For the first part of the exercise, a simple Bayesian model with four lags is estimated on the dataset. The
retained prior is the normal-Wishart, but the results are fairly invariant to the selected prior. Similar to Gali
(1992), the model aims at identifying four structural shocks assumed to drive the data dynamics: supply
shocks, real demand shocks (also labelled "IS shocks"), and monetary shocks further divided into money
supply and money demand shocks. Structural identification is conducted with the simplest possible setup:
Cholesky factorisation. This amounts to setting short-term restrictions on the structural impulse response
function of the model. Indeed, from (4.13.11), one obtains:

gd pt

m3t

ratet

cpit

=


h11 0 0 0
h21 h22 0 0
h31 h32 h33 0
h41 h42 h43 h44




ξ s
t

ξ ms
t

ξ md
t
ξ d

t

+ · · · (4.13.37)

where ξ s
t , ξ ms

t , ξ md
t and ξ d

t respectively denote supply, money supply, money demand and real de-
mand shocks. Ordering matters with Cholesky factorization, and the retained order implies the following
assumptions:

1. the real sector (GDP growth) is only affected immediately by supply shocks. Shocks on the demand
side only impact production with a lag due to the time required by producers to adapt to new demand
conditions. This is a fairly usual assumption.

2. money growth responds instantaneously to supply and money supply shocks, but monetary authorities
adjust with a lag to money demand and real demand conditions.

3. The short-term interest rate adjusts immediately to supply and monetary shocks, but takes one quarter
to adjust to changes in real demand.

4. CPI inflation adjusts immediately to all disturbances, reflecting the fact that prices adjust continuously
as a result to moves in supply and demand in all markets.

Figure 13.2 reports the structural impulse response obtained with this identification scheme. Overall,
the responses agree with the IS-LM stylized facts. Positive supply, money supply and money demand
shocks all have an expansionary effect on real GDP growth. The impact is by far the strongest for supply
shocks, at 1.5 percent point at impact. The negative response to real demand shocks on the other hand is
counter-intuitive and clearly at odd with IS-LM theory, though it is small and initially not significant.

As expected, broad money m3 increases following any shock on the demand side, at least in the medium
run. The initial decline following a positive supply shock reflects the adjustment of money supply to lower
nominal transactions, before increasing again due to higher economic activity.

CPI inflation responds postiviely to monetary shocks and real demand shocks, as expected. However, the
positive response to supply shocks is probably the strongest contradiction with the IS-LM stylized facts.
Instead of showing a drop in price level due to lower input prices, it seems to suggest a fueling in price,
possibly due to the surge in economic activity resulting from the shock. This is anyway clearly at odd
with standard IS-LM theory.
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Figure 13.2: Structural impulse response function

As a result, in a Taylor rule fashion, the short-term interest rate adjusts upwards following a positive
supply shock, a logical but nevertheless unexpected contradiction with the IS-LM framework. The up-
ward response of the short-term rate to the other shocks on the other hand is consistent with traditional
Keynesian views.

As a next step, the exercise considers the forecast error variance decomposition of the four variables
included in the model. Figure 13.3 summarizes the estimates for the model. Unlike standard IS-LM
wisdom, fluctuations in GDP can be seen to be dominated by supply shocks, even at business cycle
horizons. In fact, supply shocks almost exclusively explain output fluctuations at any horizon. This is a
critical contradiction with traditional Keynesian views that grant a significant role to demand shocks for
stabilization purposes.

Broad money growth appears almost exclusively determined by money supply shocks, a view more
aligned with monetarism and the quantitative theory of money than with traditional Keynesian beliefs
that would emphasize the contribution of money demand and real demand shocks.

The short-term interest rate proves overall consistent with IS-LM predictions. At short horizon it is dom-
inated by money demand shocks, before it leaves some space for supply and money supply shocks at
longer horizons.

Finally, CPI inflation appears mostly determined by the real demand side of the economy at business
cycle horizons, with money supply playing a larger role at long horizons. This facts are consistent with
traditional Keynesian views on price adjustment.
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Figure 13.3: Forecast error variance decomposition

The final step in this first part examines the historical decomposition of the series, as displayed in Figure
13.4. The results overall support the preceding conclusions. The fluctuations of real GDP growth can
be seen to be overhelmingly dominated by the contributions of supply shocks. This is especially true
for the 2007 financial crisis and the 2020 pandemic crisis. At the margin, money supply shocks seem
to contribute mostly negatively to output fluctuations. Perhaps paradoxically, the negative contributions
often appear after recessions, like in 1994, 2010 and 2022, when the economy would yet require more
accomodating monetary policies. Often though those negative contributions can be related to preceding
inflationary pressures calling for monetary adjustments.

Unsurprisingly, broad money fluctuations are dominated by money supply components. Supply and
money demand components sometimes play a small role, such as during the 2010 decade when the Euro
area reached a liquidity trap.

Interestingly enough, the fluctuations in the short term interest rate display a mix of contributions across
the period. Money supply and real demand shocks seem to dominate the pre-2000 sample, while subse-
quent years reveal a stronger contribution of supply shocks in the determination of monetary policy.

CPI inflation finally seem mostly determined by money supply and real demand shocks. Contributions
from money demand are almost absent, here again a paradox regarding Keynesian views that grant a
substantial role to money demand on the money market, and subsequently on the price level. Also, supply
shock contributions seem fairly small in general. This is particularly interesting in the light of the recent
surge in inflation following the 2020 pandemic. The rise in raw material and energy costs made some
analysts conclude to a major contribution of supply shocks over the period, like Bernanke and Blanchard
(2023). The model suggests on the contrary that real demand shocks played a central role in the episode,
with further fueling emanating from positive money supply shocks. This alternative narrative is supported
by other studies such as Giannone and Primiceri (2023) who advocate the role of expansionary fiscal
policies, strong consumer demand following the pandemic, and accomodative monetary policies.
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Figure 13.4: Forecast error variance decomposition

The second part of the exercise focuses on predictive performance. It aims at demonstrating the main
point of Bayesian models, namely that they produce better forecasts than their maximum likelihood
counterparts. To do so, an expanding window setup is developed. The initial sample covers the
periods 1974Q1-2004Q1 and is then expanded one quarter at a time until 2023Q4, resulting in 80
expanding windows. For each window out-of-sample forecasts are conducted up to four periods ahead for
all available VAR models, and forecast evluation criteria are calculated. The two retained criteria are the
standard root mean squared error, and the Bayesian-specific log score. Table 13.1 reports the results for
the two criteria at prediction horizon t +1 and t +4, averaged over all windows.

Looking first at the root mean squared errors, the maximum likelihood VAR consistently appears as the
lowest performer. Typical difference with the Bayesian models is about 15%, with smaller spreads for
CPI inflation and significantly higher differences for the short-term rate where the gap is almost 50% at
horizon t +1. The conclusion is robust to the forecast horizon, implying Bayesian VAR models perform
better both at short and medium terms. The predictive performance across Bayesian models then seems
to favour the Minnesota, independent and large BVAR priors (the latter two being very similar) against
the normal-Wishart and dummy observation priors. Overall yet the performance are quite close one from
each other.

The main shortcoming of the RMSE is that it only considers point estimates while in real-life applications
forecasting uncertainty also matters. The log score takes into account the full predictive density and thus
provides a richer picture of the predictive performance. Looking at this criterion, the Minnesota becomes
the weakest model, with significantly higher values for all variables but the short rate. This suggests that
the Minnesota provides good point estimates, but poor prediction intervals. The large BVAR prior seems
to dominate the other priors at the margin, but overall the last four Bayesian priors produce very similar
predictive performance.
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gdp m3 rate cpi

maximum likelihood 1.410 0.696 0.316 0.452
Minnesota 1.135 0.642 0.211 0.404
normal-Wishart 1.166 0.658 0.236 0.410
independent 1.132 0.647 0.206 0.404
dummy observations 1.161 0.653 0.238 0.411
large bvar 1.138 0.649 0.205 0.409

(a) RMSE at t +1

gdp m3 rate cpi

maximum likelihood 2.354 1.747 0.763 1.099
Minnesota 2.003 1.594 0.589 1.029
normal-Wishart 2.064 1.613 0.637 1.051
independent 1.978 1.596 0.572 1.025
dummy observations 2.065 1.612 0.637 1.049
large bvar 2.016 1.599 0.586 1.025

(b) RMSE at t +4

gdp m3 rate cpi

maximum likelihood - - - -
Minnesota 4.643 1.375 0.441 1.064
normal-Wishart 3.978 1.332 0.571 0.944
independent 4.020 1.331 0.544 0.947
dummy observations 3.909 1.323 0.571 0.952
large bvar 3.976 1.323 0.571 0.905

(c) Log score at t +1

gdp m3 rate cpi

maximum likelihood - - - -
Minnesota 4.761 3.009 1.575 3.129
normal-Wishart 4.053 2.827 1.664 2.601
independent 4.290 2.836 1.584 2.730
dummy observations 4.112 2.825 1.664 2.596
large bvar 4.155 2.809 1.622 2.521

(d) Log score at t +4

Table 13.1: Out-of-sample predictive performance
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CHAPTER 14

Bayesian VAR: advanced applications

14.1 Conditional forecasts: an agnostic approach

This section introduces the notion conditional forecasts, which is closely related to the idea of scenario
analysis. The basic approach developed in this section is very simple and follows Banbura et al. (2015).
It consists in treating the forecasts as unobserved state variables and the conditions as observed variables,
then integrate the whole setup in a standard Bayesian state-space framework.

Formally, assume that we have a VAR model and want to use it to generate forecasts ŷt for periods
t = T + 1, · · · ,T + h. We further want to implement conditions, that is, we want to constrain the path of
certain variables at certain forecast periods to take specific values exogenously decided. This means that
for some variable(s) i (i = 1, · · · ,n) and some forecast period(s) t (t = T + 1, · · · ,T + h), we want to set
ŷi,t = ȳi,t , with ȳi,t some value set exogenously for the scenario. The set of values ȳi,t then represent the
conditions for the exercise.

We may want the conditions to hold exactly, in which case they are called hard conditions. We may also
want to allow for some variability around the conditions, in which case they are called soft conditions. A
convenient way to represent this consists in assuming that the conditions are normally distributed random
variables:

ŷi,t ∼ N(ȳi,t ,ωi,t) ⇒ ŷi,t = ȳi,t+ εi,t εi,t∼ N(0,ωi,t) (4.14.1)

We may represent hard conditions by setting ωi j = 0 and soft conditions with positive values for ωi j. For
the incoming developments, it is also useful to notice that we can represent the absence of conditions
on ŷi,t by setting ȳi,t = 0 and ωi,t to a very large value, which amounts to setting a diffuse prior belief
on ŷi,t . Gathering hard conditions, soft conditions and no-conditions for forecast period t in a single
n-dimensional vector ȳt , one obtains:

ŷt = ȳt+ εt εt∼ N(0,Ωt) Ωt = diag(ωt) (4.14.2)

with:

ŷt =


ŷ1,t
ŷ2,t

...
ŷn,t

 ȳt =


ȳ1,t
ȳ2,t

...
ȳn,t

 εt=


ε1,t
ε2,t

...
εn,t

 ωt =


ω1,t
ω2,t

...
ωn,t

 (4.14.3)

Using the symmetry of the normal distribution, (4.14.2) rewrites:

ȳt = ŷt+ εt εt∼ N(0,Ωt) Ωt = diag(ωt) (4.14.4)

This represents the observation part of the setup. For the dynamic part, note that the forecasts obtain from
the VAR model:

ŷt =Czt +A1ŷt−1 + · · ·+Apŷt−p + εt εt ∼ N(0,Σ) t = T +1, · · · ,T +h (4.14.5)

139
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We can rewrite the model in companion form as in (4.12.27):

γ̂t = µt +F γ̂t−1 +ζt ζt ∼ N(0,K) (4.14.6)

with:

γ̂t =


ŷt

ŷt−1
...

ŷt−p+1

 µt =


Czt

0
...
0

 F =


A1 A2 · · · Ap

In 0 · · · 0
...

. . . . . .
...

0 · · · In 0

 ζt =


εt

0
...
0

 K =


Σ 0 · · · 0

0 0
. . .

...
...

. . . . . . 0
0 · · · 0 0


(4.14.7)

In practice, we adapt Σ in K by setting Σii = 100 whenever there is a condition on variable i at period t.
This way the prior becomes uninformative and the condition set in (4.14.4) holds exactly in the posterior.

Finally, note that we can rewrite (4.14.4) in terms of γ̂t instead of ŷt by noting that ŷt = Q γ̂t , with
Q = (In 0 · · · 0) a n×np selection matrix that keeps only the first n rows of γ̂t :

ȳt = Q γ̂t+ εt εt∼ N(0,Ωt) Ωt = diag(ωt) (4.14.8)

Equations (4.14.8) and (4.14.6) respectively represent the observation and state equations of a state-space
system in the state variable γ̂t . The first n rows of γ̂t give the conditional forecasts ŷt , which represent the
object of interest. Bayesian estimates for this state-space model can be obtained using standard approaches
such as the Carter-Kohn algorithm1.

Following, It is straightforward to define a Gibbs sampling algorithm for conditional forecasts:

algorithm 14.1: Gibbs sampling algorithm for conditional forecasts, basic approach

1. set the invariant matrices Z, ȳt and Ωt for t = T +1, · · · ,T +h.

2. at iteration j, draw β ( j) and Σ( j) from their posterior distributions. Recycle the values obtained from
the jth iteration of the Gibbs sampling algorithm. Recover C( j),A( j)

1 , · · · ,A( j)
p from β ( j), and form

F( j), K( j) and µ
( j)
t for t = T +1, · · · ,T +h.

3. obtain a sample γ̂
( j)
T+1, · · · , γ̂

( j)
T+h from a Bayesian state-space sampler such as the Carter-Kohn

algorithm.

4. keep only the first n rows of γ̂
( j)
T+1, · · · , γ̂

( j)
T+h to obtain a sample ŷT+1, · · · , ŷT+h of conditional

forecasts.

5. marginalize, that is, discard β ( j) and Σ( j) and keep only the predictions ŷ( j)
T+1, · · · , ŷ

( j)
T+h.

6. repeat until the desired number of iterations is realised.

14.2 Conditional forecasts: a structural shock approach

The basic approach to conditional forecasts is agnostic about economic theory: it simply matches the
dynamics of the model with the specified conditions. Sometimes, however, we want to assume that the
conditions are generated by a subset of the structural shocks involved in the economy, providing more
economic content to the exercise. The approach of conditional forecasts built on structural shocks has first

1Readers unfamiliar with state-space representations and Kalman filter methods should first read chapter K in Book 3 of the
package.
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been introduced by Waggoner and Zha (1999). It has then been amended by Andersson et al. (2010) to
allow for density conditions, and we follow these lines here.

So, assume we have a VAR model and want to generate forecasts ŷt for periods t = T +1, · · · ,T +h. From
(4.13.9) (Wold theorem for structural impulse response function), the value of ŷT+h can be expressed as:

ŷT+h = A(L)−1CzT+h +Ψ0ξT+h +Ψ1ξT+h−1 +Ψ2ξT+h−2 . . . (4.14.9)

Or:

ŷT+h = A(L)−1CzT+h +
∞

∑
i=0

Ψh+iξT−i︸ ︷︷ ︸
Forecast, absent future shocks

+
h

∑
j=1

Ψh− jξT+ j︸ ︷︷ ︸
Impact of future shocks

(4.14.10)

The first two terms on the right-hand side of (4.14.10) represent the deterministic part of ŷT+h. They
represent the forecast for yT+h obtained with the observed data up to period T , when future shocks are
unobserved. The second term on the right-hand side of (4.14.10) represents the contribution of future
shocks to the realised value of yT+h. Denoting the deterministic part by fT+h, (4.14.10) rewrites:

ŷT+h = fT+h +
h

∑
j=1

Ψh− jξT+ j (4.14.11)

Because fT+h represents the forecast for yT+h absent future shocks, it can easily be recovered numerically
from the reduced-form VAR (4.11.1), by computing recursively fT+1, fT+2, · · · , fT+h, ignoring the shocks
at each period. Formally, fT+h obtains from:

fT+1 =CzT+1 +A1yT +A2yT−1 + · · ·+ApyT+1−p

fT+2 =CzT+2 +A1 fT+1 +A2yT + · · ·+ApyT+2−p

...

fT+h =CzT+h +A1 fT+h−1 +A2 fT+h−2 + · · ·+Ap fT+h−p (4.14.12)

From (4.14.11), the prediction for ŷT+1, ŷT+2, · · · , ŷT+h can then write jointly as:
ŷT+1
ŷT+2
ŷT+3

...
ŷT+h

=


fT+1
fT+2
fT+3

...
fT+h

+


Ψ0 0 0 · · · 0
Ψ1 Ψ0 0 · · · 0
Ψ2 Ψ1 Ψ0 · · · 0
...

...
...

. . .
...

Ψh−1 Ψh−2 Ψh−3 · · · Ψ0




ξT+1
ξT+2
ξT+3

...
ξT+h

 (4.14.13)

Or, compactly:

ŷT+1:T+h = fT+1:T+h +M ξT+1:T+h ξT+1:T+h ∼ N(0, Ih⊗Γ) (4.14.14)

Hence, the unconditional forecasts have the following density:

ŷT+1:T+h ∼ N( fT+1:T+h, M(Ih⊗Γ)M′) (4.14.15)

Consider now imposing conditions on the forecasts. Precisely, we want to impose k conditions on the
sequence of forecasts ŷT+1:T+h, where again each of these conditions can be expressed as:

ŷi,t ∼ N(ȳi,t ,ωi,t) (4.14.16)

This can be represented in terms of ŷT+1:T+h as:

R ŷT+1:T+h ∼ N(ȳ,Ω) (4.14.17)
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R is a k× nh selection matrix that takes a value of 1 for the values of ŷT+1:T+h to which a condition
applies. ȳ is a k-dimensional vector of conditions, and Ω = diag(ω), where ω is a k-dimensional vector
of variances on the conditions. As usual, hard conditions can obtain by setting ωi = 0. The difficult part
then consists in deriving the distribution of the shocks ξT+1:T+h so that they satisfy at the same time the
unconditional density (4.14.15) and the conditional density (4.14.17). After some work, it can be shown
(book 2, p. 77) that the distribution of the constrained shocks is given by ξT+1:T+h ∼ N(µ̄,Ω̄), with:

µ̄ = D∗(ȳ−R fT+1:T+h) Ω̄ = D∗ΩD∗′+(Inh−D∗D)(Ih⊗Γ)(Inh−D∗D) (4.14.18)

where D = RM is a k× nh matrix and D∗ is the nh× k Moore-Penrose inverse of D such that DD∗ = Ik.
When k ≤ nh, the matrix D∗ is defined as:

D∗ = D′(DD′)−1 (4.14.19)

Finally combining (4.14.18) with the unconditional forecast expression (4.14.14), one obtains that the
distribution of the conditional forecasts is ŷT+1:T+h ∼ N(µ̂,Ω̂), with (book 2, p. 78):

µ̂ = fT+1:T+h+MD∗(ȳ−R fT+1:T+h) Ω̂ = M [D∗ΩD∗′+(Inh−D∗D)(Ih⊗Γ)(Inh−D∗D)] M′ (4.14.20)

The conditional forecast exercise then reduces to sampling from (4.14.20), which is straightforward. But
this methodology permits in fact to do even better. Often, we want the conditions to be generated by a
subset of the structural shocks only. For instance, we may assume that the conditions applicable on the
interest rate obtain only from monetary policy shocks. Antolin-Diaz et al. (2018) notice that this can be
achieved by setting the condition:

PξT+1:T+h ∼ N(0,Γnd) (4.14.21)

where P is a m×nh selection matrix formed by ones and zeros that takes a value of 1 to select the m shocks
that do not drive the conditions. Γnd is a m×m diagonal matrix that select the entries of Γ corresponding
to the variances of the non-driving shocks2. This way (4.14.21) constrains the non-driving shocks to keep
their unconditional distributions, permitting only the remaining driving shocks to generate the conditions.
Now, note that the unconditional forecasts (4.14.14) can rewrite

M−1ŷT+1:T+h = M−1 fT+1:T+h +ξT+1:T+h ξT+1:T+h ∼ N(0, Ih⊗Γ) (4.14.22)

Pre-multiplying by P:

QŷT+1:T+h = Q fT+1:T+h +PξT+1:T+h ξT+1:T+h ∼ N(0, Ih⊗Γ) Q = PM−1 (4.14.23)

And this eventually implies the restrictions:

Q ŷT+1:T+h ∼ N(Q fT+1:T+h,Γnd) (4.14.24)

To obtain conditional forecasts that satisfy at the same time the conditions (4.14.17) and the restrictions
on driving shocks (4.14.24), we simply stack them to obtain:

Z ŷT+1:T+h ∼ N(gT+1:T+h,Ξ) (4.14.25)

with:

Z =

(
R
Q

)
gT+1:T+h =

(
ȳ

Q fT+1:T+h

)
Ξ =

(
Ω 0
0 Γnd

)
(4.14.26)

Equation (4.14.25) is similar to (4.14.17), so that adding shock restrictions can be reduced to a regular
conditional forecast settings. Following, the conditional forecast distribution still obtains directly from

2Specifically, Γnd = diag(Pγ), where γ is the vector obtained from the main diagonal of Ih⊗Γ.
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(4.14.20), replacing R, ȳ and Ω with Z, gT+1:T+h and Ξ.

We can then propose the following Gibbs sampling algorithm for conditional forecasts:

algorithm 14.2: Gibbs sampling algorithm for conditional forecasts, structural shocks approach

1. set the invariant matrices R, ȳ, Ω, and P if shock restrictions apply.

2. at iteration j, draw β ( j), Σ( j) and Γ( j) from their posterior distributions. Recycle the values obtained
from the jth iteration of the Gibbs sampling algorithm. Recover C( j),A( j)

1 , · · · ,A( j)
p from β ( j).

3. form fT+1:T+h from C( j),A( j)
1 , · · · ,A( j)

p .

4. form Ψ0,Ψ1, · · · ,Ψh−1 from β ( j), then construct M.

5. if conditions on shocks apply, compute also Q, Z, gT+1:T+h, Γnd and Ξ.

6. compute D, D̂, D∗, µ̂ and Ω̂.

7. draw ŷ( j)
T+1:T+h from ŷ( j)

T+1:T+h ∼ N(µ̂,Ω̂).

8. marginalize, that is, discard β ( j), Σ( j) and Γ( j) and keep only the predictions ŷ( j)
T+1, · · · , ŷ

( j)
T+h.

9. repeat until the desired number of iterations is realised.

14.3 Structural identification by sign and zero restrictions

Section 13.2 introduced the notion of structural identification, along with the common approach of Cholesky
factorization. Another popular approach to structural identification is the sign restrictions methodology
introduced by Arias et al. (2018). In this approach, the structural identification is generated by restric-
tions on the signs of the structural impulse response functions, making sure that they are consistent with
economic theory.

Consider the general structural VAR introduced in definition 13.1:

H0yt = Gzt +H1yt−1 + · · ·+Hpyt−p +ξt ξt ∼ N(0, In) t = 1, · · · ,T (4.14.27)

where for simplicity it is assumed that the structural shocks have unit variance. The aim of the sign
restriction exercise consists in verifying whether the structural impulse response functions Ψ0,Ψ1,Ψ2, · · ·
produced by the SVAR (4.14.27) satisfy a set of restrictions specified by the user.

In general, we may want to test for three kinds of restrictions. Pure sign restrictions test for the sign
of the structural response of a variable to a given structural shock, at some specific horizon. That is, it
tests whether ψh

i j > 0 (alternatively ψh
i j < 0) for variable i, structural shocks j and horizon h. magnitude

restrictions test whether the magnitude of the structural response to one structural shock is larger (in
absolute value) than the magnitude of the response to some other shock. That is, it tests whether |ψh

i j| >
|ψh

ik|, for two structrual shocks j and k. Finally, zero restrictions test whether the impact of some impulse
response was null. That is, it tests whether ψh

i j = 0.

Testing for a set of k restrictions can be done by the way of an impulse-response function matrix f (Ψ)
that stacks the structural impulse response functions for all the horizons at which restrictions apply, and
pairs of selection matrices ei and si, for i = 1, · · · ,k. To make things more concrete, consider a simple
VAR with two variables and two structural shocks. We implement k = 3 restrictions covering horizons 0
and 1 (impact and one period after). Then f (Ψ) is given by:
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f (Ψ) =

(
Ψ0
Ψ1

)
=


ψ0

11 ψ0
12

ψ0
21 ψ0

22
ψ1

11 ψ1
12

ψ1
21 ψ1

22

 (4.14.28)

For the first restriction, we want the response of variable 1 to structural shock 2 at horizon 1 to be positive,
that is, ψ1

12 > 0. The restriction will hold if:

e1× f (Ψ)× s1 > 0 or
(
0 0 1 0

)
ψ0

11 ψ0
12

ψ0
21 ψ0

22
ψ1

11 ψ1
12

ψ1
21 ψ1

22

(0
1

)
> 0 or ψ

1
12 > 0 (4.14.29)

For the second restriction, we want the response of variable 2 to shock 1 to be smaller in magnitude than
the response to shock 2 at horizon 1. That is, we want |ψ1

21|< |ψ1
22|. This will hold if:

e2×| f (Ψ)|× s2 > 0 or
(
0 0 0 1

)
|ψ0

11| |ψ0
12|

|ψ0
21| |ψ0

22|
|ψ1

11| |ψ1
12|

|ψ1
21| |ψ1

22|

(−1
1

)
> 0 or |ψ1

21|< |ψ1
22| (4.14.30)

For the final restriction, we want the response of variable 2 to shock 1 to be null at impact. That is, we
want ψ0

21 = 0. The restriction will hold if:

e3× f (Ψ)× s3 = 0 or
(
0 1 0 0

)
ψ0

11 ψ0
12

ψ0
21 ψ0

22
ψ1

11 ψ1
12

ψ1
21 ψ1

22

(1
0

)
= 0 or ψ

0
21 = 0 (4.14.31)

The above procedure makes it trivial to verify whether a specific structural VAR satisfies a given set of
restrictions. Assume for now that we deal with sign restrictions only. It will become clear shorlty why the
zero restrictions represent a special case. Then we can propose the following Gibbs sampling algorithm:

algorithm 14.3: Gibbs sampling algorithm for sign and magnitude restrictions, SVAR parameteri-
zation

1. at iteration j, draw H( j)
0 , G( j) and H( j)

1 , · · · ,H( j)
p from their posterior distributions.

2. generate Ψ0,Ψ1,Ψ2, · · · , and f (Ψ).

3. for i = 1, · · · ,k, test the restriction by verifying if ei × f (Ψ)× si > 0 (for sign restrictions), or
ei×| f (Ψ)|× si > 0 (for magnitude restrictions).

4. keep the draw if all k restrictions are satisfied; else, reject and go back to step 1.

5. repeat until the desired number of sucessful iterations is realised.

The problem with algorithm 14.3 is that in practical applications it is usually not possible to sample
directly from the SVAR parameters H0,G,H1, · · · ,Hp. Rather, we can sample from the reduced-form
parameters B and Σ. Therefore, we need a mapping from the reduced-form parameters to the structural
parameters. To do so, Arias et al. (2018) propose a parameterization called the orthogonal reduced-form
parameterization, given by:

yt =Czt +A1yt−1 + · · ·+Apyt−p +h(Σ) Q ξt ξt ∼ N(0, I) t = 1, · · · ,T (4.14.32)
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The matrix h(Σ) is any decomposition of Σ such that h(Σ)h(Σ)′ = Σ. In practice, we take h(Σ) to be the
Cholesky factor, though any differentiable decomposition would do. Q is a n×n orthogonal matrix such
that QQ′ = In. It plays the role of a rotation matrix applied to the original decomposition h(Σ). It is easy
to see that this formulation is equivalent to the regular reduced-form VAR (4.11.1). Indeed, we can define
εt = h(Σ) Q ξt and obtain:

Var(εt) =Var(h(Σ) Q ξt) = h(Σ) Q In Q′ h(Σ)′ = h(Σ) Q Q′ h(Σ)′ = h(Σ) h(Σ)′ = Σ (4.14.33)

It is also easy to notice that H = h(Σ) Q is the structural decomposition matrix of the model since HH ′=Σ.
Pre-multiplying the orthogonal reduced-for VAR (4.14.32) by H0 = H−1, one recovers the structural VAR
(4.14.27). Conditional on the orthogonal reduced-form parameters B,Σ and Q, one can thus recover the
SVAR parameters H0,G,H1, · · · ,Hp, and test for the sign restrictions.

It remains to obtain random draws for the orthogonal matrix Q. Ideally, the draws would obtain from a
uniform distribution since we are agnostic about which values Q should take. Arias et al. (2018) propose
a simple method to obtain Q:

algorithm 14.4: Sampling of orthogonal matrix Q from uniform distribution

1. generate a n×n matrix X with each element having an independent standard normal distribution.

2. compute QR = X , the QR decomposition of X .

3. if needed, normalize Q and R so that the diagonal of R has only positive entries; then Q has the
uniform ditribution over O(n), the set of n×n orthogonal matrices.

It is then possible to define the following Gibbs sampling algorithm for restrictions:

algorithm 14.5: Gibbs sampling algorithm for sign and magnitude restrictions, orthogonal
reduced-form parameterization

1. at iteration j, draw the reduced-form parameters B( j) and Σ( j) from their posterior distributions.

2. from B( j), obtain the impulse-response function Φ0,Φ1,Φ2 · · · .

3. from Σ( j), obtain the decomposition h(Σ).

4. generate an orthogonal matrix Q from algorithm 14.4.

5. create a candidate structural decomposition matrix H = h(Σ) Q.

6. generate the structural impulse response function Ψ0,Ψ1,Ψ2 · · · from Ψi = Φi H; generate the
matrix f (Ψ).

7. for i = 1, · · · ,k, test the restriction by verifying if ei × f (Ψ)× si > 0 (for sign restrictions), or
ei×| f (Ψ)|× si > 0 (for magnitude restrictions).

8. keep H if all k restrictions are satisfied; else, reject and go back to step 1.

9. repeat until the desired number of sucessful iterations is realised.

Consider now adding zero restrictions. Intuitively, we would like to use algorithm 14.5 for zero restrictions
as well, but this is not possible. The problem is that the the set of random matrices Q satifying the zero
restrictions has measure zero. That is, the probability to obtain by chance a random rotation matrix Q that
will exactly satisfy the zero restrictions is null. For this reason, the matrix Q must be constructed column
by column so as to satisfy the restrictions. Arias et al. (2018) propose the following algorithm:
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algorithm 14.6: Construction of matrix QQQ satisfying the zero restrictions

for j = 1,2, · · · ,n:

1. construct the matrix Z j that stacks the ei vectors related to zero restrictions on structural shock j. If
there are no zero restrictions on shock j, define Z j to be the empty matrix.

2. construct the matrix Q′j−1, where Q0 is the empty matrix, and otherwise Q j−1 = [q1 q2 · · · q j−1]
denotes the set of columns of Q previously created.

3. construct the matrix R j =

(
Z j× f (Ψ)

Q′j−1

)
.

4. draw a random vector x j from a standard normal distribution on Rn.

5. if R j is empty, define q j = x j/‖x j‖.

6. if R j is non-empty, find a matrix N j whose columns form a non-zero orthonormal basis for the
nullspace of R j; then define q j = N j(N′jx j/‖N′jx j‖).

7. set q j as column j of Q.

The methodology implies that no more than (n− j) zero restrictions can be set on structural shock j,
otherwise the matrix Q is not identified3. As the ordering of variables does not matter with sign restric-
tions, one can play on the ordering to cope with the desired number of zero restrictions on the different
variables.

With algorithm 14.6, it is possible to develop a Gibbs sampling procedure for the general case of sign,
magnitude and zero restrictions:

algorithm 14.7: Gibbs sampling algorithm for sign and magnitude restrictions, orthogonal
reduced-form parameterization

1. at iteration j, draw the reduced-form parameters B( j) and Σ( j) from their posterior distributions.

2. from B( j), obtain the impulse-response function Φ0,Φ1,Φ2 · · · .

3. from Σ( j), obtain the decomposition h(Σ). Get a preliminary matrix f (Ψ̃) from Ψ̃i = Φi h(Σ).

4. generate an orthogonal matrix Q from algorithm 14.6, using f (Ψ̃).

5. create a candidate structural decomposition matrix H = h(Σ) Q.

6. generate the structural impulse response function Ψ0,Ψ1,Ψ2 · · · from Ψi = Φi H; generate the
matrix f (Ψ).

7. for i = 1, · · · ,k, test the restriction by verifying if ei × f (Ψ)× si > 0 (for sign restrictions), or
ei× | f (Ψ)| × si > 0 (for magnitude restrictions). Zero restrictions need not be verified since they
are satisfied by construction.

8. keep H if all k restrictions are satisfied; else, reject and go back to step 1.

9. repeat until the desired number of sucessful iterations is realised.

This concludes the presentation of the sign restrictions methodology. A final remark applies: in case of
pure sign restrictions, algorithm 14.5 is equivalent to sampling directly from the posterior distribution of
the SVAR parameters. When zero restrictions are involved, however, algorithm 14.7 produces structural
parameter draws from a different distribution. To remedy this problem, Arias et al. (2018) propose an
importance sampling procedure. We do not follow this line, for two reasons at least. First, in practice,

3If ones tries to impose more than (n− j) zero restrictions on structural shock j, then the basis N j of the nullspace of R j can only
be the trivial zero vector. This in turns implies that q j is also a zero vector so that Q cannot be orthogonal.
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using or not the importance sampling procedure generates similar distributions. Second, the importance
sampling procedure is computationally expensive and may render estimation intractable. Also, it requires
the computation of numerical derivatives, making it prone to numerical error and instability. In every
respect, it seems simpler and safer to apply algorithm 14.7 directly.

14.4 Structural identification by narrative sign restrictions

Antolin-Diaz and Rubio-Ramírez (2018) propose to extend the class of sign restriction methodologies to
structural shocks and historical decomposition. They call this new category of restrictions the narrative
sign restrictions. The overall identification procedure is similar to that of traditional sign restrictions and
only requires some adaptation to account for the alternative applications to which the restrictions apply.

Consider first structural shock restrictions. These restrictions apply either to the sign of the jth structural
shock at some sample period t (e.g. ξi,t > 0), or to the relative magnitudes of shocks at period t (e.g.
|ξi,t | > |ξ j,t |). Similar to regular sign restrictions, we can test for the restrictions with a structural shock
matrix f (ξ ) stacking the relevant vectors of in-sample structural shocks on which restrictions apply, and
pairs of selection matrices ei and si, for i = 1, · · · ,k restrictions.

Consider again the case of a simple VAR with two variables and two structural shocks. We implement
k = 2 shock restrictions covering sample periods t = 50 and 51. Then f (ξ ) is given by:

f (ξ ) =
(

ξ ′50
ξ ′51

)
=

(
ξ1,50 ξ2,50
ξ1,51 ξ2,51

)
(4.14.34)

For the first restriction, we want the first structural shock to be negative at sample period t = 51, that is,
ξ1,51 < 0. The restriction will hold if:

e1× f (ξ )× s1 > 0 or
(
0 1

)(ξ1,50 ξ2,50
ξ1,51 ξ2,51

)(
−1
0

)
> 0 or ξ1,51 < 0 (4.14.35)

The second restriction considers that the first structural shock at period t = 50 is larger in magnitude than
the second structural shock, that is, |ξ1,50|> |ξ2,50|. The restriction will hold if:

e1×| f (ξ )|× s1 > 0 or
(
1 0

)(|ξ1,50| |ξ2,50|
|ξ1,51| |ξ2,51|

)(
1
−1

)
> 0 or |ξ1,50|> |ξ2,50| (4.14.36)

Consider now the case of historical decomposition restrictions. Remember from (4.13.35) and (4.13.36)
that the historical decomposition of sample observation yi,t is given by:

yi,t = di,t +hi1,t +hi2,t + · · ·+hin,t hik,t =
t−1

∑
j=0

ψ
j

ikξk,t− j (4.14.37)

Each hi j,t represents the historical contribution of shock j to the value of variable i at sample period
t. Again, two types of restrictions apply. We can implement restrictions on the sign of the historical
contribution of structural shock j on variable i at some sample period t (e.g. hi j,t > 0). Or we can
apply restrictions on the relative magnitudes of the historical contributions of structural shocks j and k on
variable i at some sample period t (e.g. |hi j,t | > |hik,t |). The restrictions can be checked with a historical
decomposition matrix f (h) stacking the relevant vectors of in-sample historical contributions on which
restrictions apply, and pairs of selection matrices ei and si, for i = 1, · · · ,k restrictions.
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Consider again the case of a simple VAR with two variables and two structural shocks. We implement
k = 2 historical restrictions covering sample periods t = 50 for variable 1 and period t = 51 for variable
2. Then f (h) is given by:

f (h) =
(

h′1,50
h′2,51

)
=

(
h11,50 h12,50
h21,51 h22,51

)
(4.14.38)

For the first restriction, we want the historical contribution of structural shock 1 to variable 1 at period
t = 50 to be positive, that is, h11,50 > 0. The restriction will hold if:

e1× f (h)× s1 > 0 or
(
1 0

)(h11,50 h12,50
h21,51 h22,51

)(
1
0

)
> 0 or h11,50 > 0 (4.14.39)

The second restriction considers that the historical contribution of structural shock 2 to variable 2 at period
t = 51 is larger than that of structural shock 1, that is, |h22,51|> |h21,51|. The restriction will hold if:

e1×| f (h)|× s1 > 0 or
(
0 1

)(|h11,50| |h12,50|
|h21,51| |h22,51|

)(
−1
1

)
> 0 or |h22,51|> |h21,51| (4.14.40)

With these elements, we can propose a simple Gibbs sampling procedure for the narrative sign restrictions:

algorithm 14.8: Gibbs sampling algorithm for narrative sign restrictions

1. at iteration j, draw the reduced-form parameters B( j) and Σ( j) from their posterior distributions.

2. from B( j), obtain the reduced-form residuals ε1,ε2, · · · ,εT .

3. from B( j), obtain the impulse-response function Φ0,Φ1,Φ2 · · · .

4. from Σ( j), obtain the decomposition h(Σ).

5. generate an orthogonal matrix Q from QR = X , with X a n×n matrix with each element having an
independent standard normal distribution, and the diagonal of R normalized to be positive.

6. create a candidate structural decomposition matrix H = h(Σ) Q.

7. generate the structural shocks ξ1,ξ2, · · · ,ξT from the ξt = H−1εt . Generate f (ξ ).

8. generate the structural impulse response function Ψ0,Ψ1,Ψ2 · · · from Ψi = Φi H.

9. generate the historical decomposition hi j,t , for each triplet i, j, t on which some restriction applies.
Generate f (h).

10. for i = 1, · · · ,k, test the restriction by verifying if ei× f (ξ )×si > 0 (for sign restrictions on shocks),
ei× | f (ξ )| × si > 0 (for magnitude restrictions on shocks), ei× f (h)× si > 0 (for historical sign
restrictions), or ei×| f (h)|× si > 0 (for historical magnitude restrictions).

11. keep H if all k restrictions are satisfied; else, reject and go back to step 1.

12. repeat until the desired number of sucessful iterations is realised.
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14.5 Structural identification by proxy-SVAR

The approaches discussed so far identify the structural VAR model by imposing some restrictions on
the sign of the shocks, impulse response functions, or historical decomposition. An alternative approach
consists in identifying the structural VAR by using external instruments known as proxy, assuming that
these instruments carry some information about the structural shocks to be identified. While there exist
a number of contributions on the frequentist side, few Bayesian methodologies have been developed.
Caldara and Herbst (2019) propose a Metropolis-Hastings procedure that relies on a single proxy. A more
general approach is developed by Arias et al. (2021), and the presentation in this section follows the same
line.

Consider a general structural VAR of the form:

H0yt = Gzt +H1yt−1 + · · ·+Hpyt−p +ξt ξt ∼ N(0, In) t = 1, · · · ,T (4.14.41)

where yt ,yt−1, · · · ,yt−p and ξt are n-dimensional vectors of observations and structural shocks, and
H0,H1, · · · ,Hp are n× n matrices of coefficients. Consider adding a vector rt containing h external
instruments or proxy to the structural VAR. Then model (4.14.41) can rewrite jointly with rt as:(

H0 0n×h
Γ0,1 Γ0,2

)(
yt

rt

)
=

(
G
F

)(
zt
)
+

(
H1 0n×h
Γ1,1 Γ1,2

)(
yt−1
rt−1

)
+ · · ·+

(
Hp 0n×h
Γp,1 Γp,2

)(
yt−p

rt−p

)
+

(
ξt

νt

)
(4.14.42)

where Γi,1 and Γi,2 respectively denote matrices of coefficients of dimension h× n and h× h, for
i = 0,1, · · · , p. νt is a h-dimensional vector of structural shock specific to the instrument and
uncorrelated with ξt , with νt ∼ N(0, Ih). Note that the original SVAR (4.14.41) implies blocks of
zeros in the coefficient matrices of the augmented SVAR (4.14.42). These are known as the block
restrictions of the proxy SVAR.

Model (4.14.42) can be written in compact form as:

H̄0ȳt = Ḡzt + H̄1ȳt−1 + · · ·+ H̄pȳt−p + ξ̄t ξ̄t ∼ N(0, In̄) n̄ = n+h (4.14.43)

Stacking the regressors and coefficient matrices, (4.14.43) can rewrite:

H̄0ȳt = H̄+x̄t + ξ̄t H̄+ =
(
Ḡ H̄1 · · · H̄p

)
x̄t =

(
z′t ȳ′t−1 · · · ȳ′t−p

)′ (4.14.44)

The h external instruments in rt are assumed to be correlated with h structural shocks in ξt , and to be
uncorrelated with the other shocks. The first assumption is known as the relevance conditions, and states
that the proxy are expected to carry information about the structural shocks to which they are related.
The second assumption is known as the exogeneity restrictions, and states that the proxy don’t carry
information beyond the structural shocks they represent. Without loss of generality, let the h proxy be
related to the last h structural shocks, and uncorrelated with the first n−h elements of ξt .

Consider H̄0. It is easy to show (book 2, p. 78) that its inverse H̄−1
0 is given by:

H̄−1
0 =

(
H−1

0 0n×h

−Γ
−1
0,2 Γ0,1 H−1

0 Γ
−1
0,2

)
(4.14.45)

Using (4.14.45) with the relevance and exogeneity restrictions, it can then be shown (book 2, p. 79) that:

E(rtξ
′
t ) = [0h×(n−h) V ] =−Γ

−1
0,2 Γ0,1 H−1

0 (4.14.46)
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The first equality in (4.14.46) reflects the fact that the first n− h structural shocks are orthogonal to the
proxy variables (exogeneity restrictions), while the last h structural shocks are correlated with the h proxies
through the covariance matrix V (relevance conditions). The second equality shows that identifying a
proxy-SVAR is realized through zero restrictions on the structural parameters Γ0,1, Γ0,2 and H−1

0 (the
exogeneity restrictions). Note in particular that (4.14.46) implies zero restrictions on the columns of
H = H−1

0 , the structural identification matrix of the SVAR (4.14.41).

Intuitively, we would like to apply the methodology of Arias et al. (2018) on sign and zero restrictions to
the proxy SVARs: estimate the Bayesian VAR under the orthogonal reduced-form parameterization, then
sample from the distribution over the structural parameterization of the proxy-SVAR conditional on the
block and exogeneity restrictions (4.14.42) and (4.14.45). Unfortunately, this is not possible because the
implied number of zero restrictions is too large. For this reason, Arias et al. (2021) propose an alternative
parameterization called the orthogonal triangular-block parameterization.

Concretely, the orthogonal triangular-block parameterization works as follows. Let Λ̄0 be a n̄× n̄ matrix
restricted to be lower-triangular with positive diagonal. Let Λ̄+ be a n̄× k̄ matrix, where k̄ = m+ n̄p and
m denotes as usual the number of exogenous regressors in zt . Λ̄+ is defined as Λ̄+ = (D Λ1 · · · Λp),
where D is a n̄×m matrix and each Λi is n̄× n̄ and restricted so that the upper right n× h block is
zero, similar to H̄i. Finally let Q1 and Q2 respectively denote n× n and h× h orthogonal matrices, and
let Q = diag(Q1,Q2) be a n̄× n̄ block-diagonal orthogonal matrix. Λ̄0, Λ̄+ and Q together define the
orthogonal triangular-block parameterization, which writes as:

Λ̄0 ȳt = Λ̄+ x̄t + ūt ūt = Q′ ξ̄t (4.14.47)

It is then easy to see that we can obtain parameters H̄0 and H̄+ that satisfy the block restrictions and thus
satisfy (4.14.44) by applying the mapping:

H̄0 = Q Λ̄0 H̄+ = Q Λ̄+ (4.14.48)

The orthogonal triangular-block representation (4.14.47) is similar to the proxy-SVAR representation
(4.14.44) up to a pre-multiplication by Q, which thus plays here the role of a rotation matrix
mapping the two representations.

The first step of the orthogonal triangular-block approach then consists in obtaining values for Λ̄0 and Λ̄+.
Arias et al. (2021) propose to sample these parameters from a restricted normal-generalized-normal
distribution, which is a conjugate posterior distribution satisfying the block restrictions. The procedure
is involving, so we will mainly outline the procedure as a cookbook. First, define the stacked data matrix
for the SVAR data as:

Ȳ =
(
ȳ1 ȳ2 · · · ȳT

)′ X̄ =
(
x̄1 x̄2 · · · x̄T

)′ (4.14.49)

where Ȳ and X̄ are of respective dimensions T × n̄ and T × k̄. The posterior distribution involves four
posterior parameters ᾱ , W̄ , B̄ and S̄, defined as:

ᾱ = α +T W̄ = (W−1 + X̄ ′X̄)−1 B̄ = W̄ (W−1B+ X̄ ′Ȳ ) S̄ = S+ Ȳ ′Ȳ +B′W−1B− B̄′W̄−1B̄

(4.14.50)

ᾱ is a scalar-valued shape parameter and S̄ is a n̄× n̄ scale matrix. W̄ and B̄ respectively denote k̄× k̄ and
k̄× n̄ covariance and location matrices. Arias et al. (2021) suggest to set the prior parameters α , W , B and
S to α = n̄, W−1 = 0, B = 0 and S = 0. However, more sensitive values can be used, such as the prior
values α , W , B and S used for the normal-Wishart as described in section 11.3.
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The difficult part consists in sampling Λ̄0 and Λ̄+ that satisfy the orthogonal triangular-block
representation. This can be done with the Gibbs sampling algorithm of Waggoner and Zha (2003), which
provides a method to sample SVAR parameters subject to certain class of linear restrictions. Applied to
the proxy SVAR parameters, this yields the following algorithm:

algorithm 14.9: Sampling of SVAR parameters Λ̄0 and Λ̄+

For j = 1, · · · , n̄:

1. generate the matrices U j and Vj. U j is defined as the first j columns of In̄. For j = 1, · · · ,n, Vj is
block diagonal with p+ 1 block; the first block (for the exogenous regressors) is Im, and the other
p blocks (one for each lag of the endogenous) are n̄×n matrices made of the first n columns of In̄.
For j = n+1, · · · , n̄, Vj is defined as Ik̄.

2. define the matrices:
H j = (V ′j W̄−1 Vj)

−1

Pj = H j V ′j W̄−1 B̄ U j

Q j = ᾱ (U ′j S̄ U j +U ′j B̄′ W̄−1 B̄ U j−P′j H−1
j Pj)

−1

3. find a non-zero vector z that is orthogonal to all rows of Λ̄0, save row j. Use the values of Λ̄0
obtained from the latest Gibbs sampler iteration.

4. define the vector w1 = F ′j U ′j z/‖F ′j U ′j z‖, where Fj is the Cholesky factor of Q j.

5. build the vectors w2, · · · ,w j recursively so that they form an orthonormal basis for R j. To do so,
denote w′1 =

(
w1,1 w1,2 · · · w1, j

)
. Then for i = 2, · · · , j, define:

w′i =
(
w1,1w1,i · · · w1,i−1w1,i −ci−1 0 · · · 0

)
/
√

ci−1ci with ci = ∑
i
k=1 w2

1,k

6. define the vector s =
(
s1 · · · sᾱ+1

)′, where each si is drawn from si ∼ N(0,1/ᾱ). Then define
r = s′s, and finally assign β1 =

√
(r) or β1 =−

√
(r), each with probability one-half.

7. draw βi from βi ∼ N(0,1/ᾱ), for i = 2, · · · , j.

8. define γ0, j = Fj ∑
j
i=1 βi wi. If needed, multiply by −1 so that entry j of γ0, j is positive; this ensures

a positive diagonal for Λ̄0.

9. draw γ+, j from γ+, j ∼ N(Pj γ0, j,H j).

10. generate λ0, j, the jth row of Λ̄0, and λ+, j, the jth row of Λ̄+, from:
λ0, j =U j γ0, j λ+, j =Vj γ+, j

Update Λ̄0 and Λ̄+.

The orthogonal triangular-block parameterization guarantees that the block restrictions are satisfied, but
not the exogeneity restrictions. The second step of the approach thus consists in imposing linear
restrictions on the columns of Q1 to satisfy the exogeneity conditions. To see this, note that from (4.14.45),
the exogeneity restrictions (4.14.46) can be expressed as:

J H̄−1
0 ē j = 0h×1 j = 1, · · · ,n−h (4.14.51)

with J =
(
0h×n Ih

)
and ē j a n̄-dimensional selection vector of zeros that takes a value of 1 on its jth

entry. Also, from (4.14.48), (4.14.51) rewrites:

J Λ̄
−1
0 Q′ ē j = 0h×1 j = 1, · · · ,n−h (4.14.52)

Finally, define L =
(
In 0n×h

)
. It is easily verified that Q′ ē j = L′ Q′1 e j, with e j a n-dimensional selection

vector of zeros that takes a value of 1 on its jth entry. Then (4.14.52) eventually rewrites:

J Λ̄
−1
0 L′ Q′1 e j = 0h×1 ⇒ G Q′1 e j = 0h×1 G≡ J Λ̄

−1
0 L′ j = 1, · · · ,n−h (4.14.53)
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Equation (4.14.53) shows that the exogeneity restrictions are equivalent to linear restrictions on the
columns of Q1. We denote by z j the number of restrictions on the jth column of Q1, which is z j = h
for j = 1, · · · ,n− h, and z j = 0 for j = n− h+ 1, · · · ,n. Arias et al. (2021) then propose the following
algorithm to draw matrices Q1 and Q2 that satisfy the exogeneity restrictions:

algorithm 14.10: Construction of a matrix Q satisfying the exogeneity restrictions
For a given matrix G = J Λ̄

−1
0 L′:

1. for j = 1, · · · ,n, draw a vector x1, j of dimension n+1− j− z j from a standard normal distribution
and set w1, j = x1, j/‖x1, j‖.

2. define Q1 = [q1,1 · · · q1,n] recursively by q1, j =K1, jw1, j, for any matrix K1, j whose columns form
an orthonormal basis for the nullspace of the ( j−1+ z j)×n matrix:
M1, j = [q1,1 · · · q1, j−1 G′]′ for j = 1, · · · ,n−h.
M1, j = [q1,1 · · · q1, j−1]

′ for j = n−h+1, · · · ,n.

3. obtain Q2 from algorithm 14.4.

4. set Q = diag(Q1,Q2)
′.

Algorithm 14.10 ensures that Q satisfies the exogeneity conditions, but we want to make sure that the
relevance conditions are satisfied as well. This implies that the matrix V in (4.14.46) is non-singular. In
practice, we may want to make sure that V is, in fact, far from being singular. To do so, Arias et al. (2021)
suggest to use a relevance matrix P, defined as:

P = (Γ−1
0,2Γ

−1
0,2
′+VV ′)−1VV ′ (4.14.54)

One then checks whether the minimum eigenvalue of P is larger than some chosen λ , with 0 ≤ λ ≤ 1.
This implies that at least λ percent of the variance of any linear combination of the proxys is related to
the underlying shocks of interest.

With these elements, it is finally possible to propose a complete Gibbs sampling algorithm for the proxy
SVAR:

algorithm 14.11: Gibbs sampling algorithm for the proxy-SVAR

1. set the posterior parameters ᾱ , W̄ , B̄, S̄, and H j, Pj, Q j for j = 1, · · · , n̄.

2. set the initial value Λ̄
(0)
0 = In̄.

3. at iteration j, draw Λ̄
( j)
0 and Λ̄

( j)
+ , using algorithm 14.9.

4. at iteration j, draw Q( j), using algorithm 14.10.

5. obtain the SVAR parameters from H̄( j)
0 = Q( j) Λ̄

( j)
0 and H̄( j)

+ = Q( j) Λ̄
( j)
+ .

6. given H̄( j)
0 , compute V from (4.14.46) and the relevance matrix P from (4.14.54); if the minimum

eigenvalue of P is larger than λ , keep the draws; else, discard and return to step 3.

7. repeat until the desired number of iterations is realised.

This concludes the main presentation of the proxy-SVAR methodology. A few additional points are worth
noting. First, Arias et al. (2021) argue that as it is, algorithm 14.11 is not sufficient to properly identify the
structural shocks of the model. Additional restrictions are required to solve this identification problem,
and these can be any among sign, zero, or narrative restrictions.
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The case of additional zero restrictions must be handled with care since the exogeneity conditions already
involve zero restrictions on the first n− h shocks. Following, a maximum of n− h− j additional zero
restrictions can be applied on structural shock j to keep Q well identified. An additional zero restriction
on shock j can be expressed as:

e j f (Ψ̃) L′ Q′1 s j = G j Q′1 s j = 0 G j ≡ e j f (Ψ̃) L′ (4.14.55)

where similarly to section 14.3, the matrix f (Ψ̃) = f (Φ̃) h(Σ) stacks the IRFs for the periods on which
the restrictions apply, e j and s j are selection vectors with a single 1 entry, and L is defined as in (4.14.53).
Stacking the h j restriction vectors e j for shock j in a matrix Z j, this rewrites:

Z j f (Ψ̃) L′ Q′1 s j = G j Q′1 s j = 0 G j ≡ Z j f (Ψ̃) L′ (4.14.56)

Algorithm 14.10 then needs to be rewritten as follows to account for the additional zero restrictions:

algorithm 14.12: Construction of a matrix Q satisfying the exogeneity and zero restrictions
For given matrices G = J Λ̄

−1
0 L′ and G j = Z j f (Ψ̃) L′:

1. for j = 1, · · · ,n, draw a vector x1, j of dimension n+1− j− z j−h j from a standard normal distri-
bution and set w1, j = x1, j/‖x1, j‖.

2. define Q1 = [q1,1 · · · q1,n] recursively by q1, j =K1, jw1, j, for any matrix K1, j whose columns form
an orthonormal basis for the nullspace of the ( j−1+ z j +h j)×n matrix:
M1, j = [q1,1 · · · q1, j−1 G′ G′j]

′ for j = 1, · · · ,n−h.
M1, j = [q1,1 · · · q1, j−1 G′j]

′ for j = n−h+1, · · · ,n.

3. obtain Q2 from algorithm 14.4.

4. set Q = diag(Q1,Q2)
′.

Regarding sign restrictions, Arias et al. (2021) propose a new type of restrictions that apply specifically
to the proxy SVAR: covariance restrictions. Indeed, the matrix V defined in (4.14.46) represents the
covariance matrix between the proxies and the structural shocks to which they relate. Setting restrictions
on the signs of the covariances then ensures that only meaningful models will be retained by the Gibbs
sampler.

To illustrate this, consider again the case of a proxy SVAR with two proxys correlated with the last two
structural shocks of the model. For the first restriction, we want the covariance of the first proxy with the
first structural shock (among the last two) to be positive, that is, V11 > 0. The restriction will hold if:

e1×V × s1 > 0 or
(
1 0

)(V11 V12
V21 V22

)(
1
0

)
> 0 or V11 > 0 (4.14.57)

The second restriction considers that the covariance between the second proxy and the second structural
shock is stronger than that with the first structural shock, that is, V22 >V21. The restriction will hold if:

e1×V × s1 > 0 or
(
0 1

)(V11 V12
V21 V22

)(
−1
1

)
> 0 or V22 >V21 (4.14.58)
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Equiped with these additional restrictions, it is possible to define the general Gibbs algorithm for the proxy
SVAR:

algorithm 14.13: Gibbs sampling algorithm for the proxy-SVAR with sign and zero restrictions

1. set the posterior parameters ᾱ , W̄ , B̄, S̄, and H j, Pj, Q j for j = 1, · · · , n̄.

2. set the initial value Λ̄
(0)
0 = In̄.

3. at iteration j, draw Λ̄
( j)
0 and Λ̄

( j)
+ , using algorithm 14.9.

4. at iteration j, draw Q( j); use algorithm 14.10 if there are no additional zero restrictions; if additional
zero restrictions apply, use algorithm 14.12 instead.

5. obtain the SVAR parameters from H̄( j)
0 = Q( j) Λ̄

( j)
0 and H̄( j)

+ = Q( j) Λ̄
( j)
+ .

6. given H̄( j)
0 , compute V from (4.14.46) and the relevance matrix P from (4.14.52); if the minimum

eigenvalue of P is larger than λ , continue; else, discard and return to step 3.

7. verify that the sign, narrative and correlation restrictions are satisfied; if yes, keep H̄( j)
0 and H̄( j)

+ ;
else, discard the draws and return to step 3.

8. repeat until the desired number of iterations is realised.

This concludes the presentation of the proxy SVAR methodology. A final remark applies: similar to the
sign restriction methodology, a direct application of algorithm 14.13 does not produce samples from the
target distribution (the normal-generalized-normal distribution), and for this reason Arias et al. (2021)
propose to apply a similar importance sampling procedure. We do not follow this line for reasons similar
to that developed at the end of section 14.3, and apply the simpler and safer algorithm 14.13 without ado.

14.6 How well does the IS-LM model fit postwar E.U. data?
(revisited)

This section revisits the E.U. postwar dataset introduced in section 13.6. In the latter, some results appear
inconsistent with the stylized predictions of the IS-LM model. One possible reason for this is the sim-
plistic approach used for the exercise: a simple Bayesian VAR with structural identification conducted by
Cholesky factorisation.This section introduces a more sophisticated approach: a Bayesian proxy-SVAR
with additional sign and covariance restrictions to properly identify the structural shocks.

The base setup is unchanged and includes the data series of real GDP growth, broad money m3, the
3-month interest rate and CPI inflation introduced previously. The dataset is supplemented with two
additional series that play the role of proxys for the proxy-SVAR. The first series is a proxy for supply
shocks. It is calculated as the quarterly growth rate of the commodity price index supplied by the European
Central Bank for the Euro area. The second series is a real demand proxy, obtained from the quarterly
growth rate of the OECD Consumer Opinion Surveys index. The correlation between the two series is
less than 0.03, making them effectively orthogonal, as expected. The two proxys are represented in Figure
14.1:



14.6. HOW WELL DOES THE IS-LM MODEL FIT POSTWAR E.U. DATA? (REVISITED) 155

Figure 14.1: Supply and real demand proxys

The new dataset is then used in the proxy SVAR model developed in section 14.5. The relevance param-
eter λ is set to 0.1 to ensure consistency between the proxys and the identified shocks. Note again that
estimating a proxy SVAR is not sufficient in itself to properly identify the structural shocks of the model.
To do so additional restrictions are necessary. Table 14.1 summarizes the set of restrictions implemented
on impulse response functions:

supply money supply money demand real demand

gdp + + +
m3
rate - +
cpi - + + +

Table 14.1: Sign restrictions on impulse response functions

The restrictions on CPI inflation identify the supply shock, stating it is the only shock that affects in-
flation downwards. By contrast, all the other shocks are assumed to increase the price level, consistent
with traditional Keynesian views. Money supply and money demand shocks are further identified by con-
straining the latter to result in a rise of the interest rate, while the former contributes to reduce it. Positive
restrictions on GDP are set to secure the positive impact of supply, money supply and real demand shocks
on short-term economic activity. All the restrictions are set for the initial period of impulse response
functions.

It may seem that this setup does not identify the real demand shock, but it is not so. By construction, the
real demand shock is correlated with its proxy while the money supply and money demand shocks are
orthogonal to it. As the supply shock is identified on its own, this is sufficient for proper identification.
Also, to guarantee consistent identification of the structural shocks, positive covariance restrictions are
implemented between the supply and real demand shocks and their respective proxys. This minimal setup
permits a proper identification of the shocks while leaving a substantial amount of flexibility to the model.

Figure 14.2 reports the impulse response function of the estimated prox-SVAR. Unlike those previously
obtained in section 13.6, these responses are consistent with the stylized predictions of the IS-LM model,
though by construction for some of them.

All the positive shocks now trigger an increase in real GDP growth. Real demand and monetary shocks
are short-lived (about 12 quarters) while supply shocks are significantly longer-lasting (about 24 quarters).
This is consistent with the Keynesian view of a permanent effect of supply shocks on production see e.g.
Blanchard and Quah (1989)).
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Figure 14.2: Structural impulse response function

Money supply shocks create a transitory drop in the short rate, before it rises again due to improved
economic activity. Similarly, supply shocks result in a fall in the 3-month rate, though the effect looks
small and non-significant. As expected, the effect is reversed for money demand and real demand shocks.
This contrasts with section 13.6, where all the structural shocks were generating rising interest rates.

Broad money m3 increases after a positive money shock, be it supply or demand, the explanation for the
latter probably being partial accomodation by the monetary authorities. Supply and real demand shocks
both trigger a temporary drop in aggregate money, with no obvious rationale for the latter though the
finding is consistent with that of Gali (1992).

Finally, CPI inflation follows common IS-LM wisdom that all shocks result in an increase of the price
level, save for supply shocks that result in lower inflation. These results are by construction for the
initial period, but not the observed subsequent hump-shaped reaction which reflects the transient effect of
structural shocks on the price level.

Figure 14.3 reports the forecast error decomposition for the model. A striking difference with section
13.6 is that at business cycle horizons, fluctuations in real GDP growth are now mostly determined by real
demand shocks. Supply shocks now represent the smallest share with barely 10% of the fluctuations, while
moneatry shocks roughly account for a quarter of the observed variation. This is much more consistent
with the IS-LM framework where IS shocks play a key role in output stabilization.

As expected, broad money remains largely determined by money supply shocks, though money demand
account for about 30% of the fluctuations in the long-run, supporting again the hypothesis of partial
accomodation by central authorities.

Consistent also with Keynesian theory, the short-term interest rate is overwhelmingly dominated by money
demand shocks, with some space left in the long run to money supply shocks. Supply and real demand
shocks play almost no role at any horizon, in agreement with the LM curve construction.
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Figure 14.3: Forecast error variance decomposition

Interestingly enough, CPI inflation seems more balanced between the different components. While supply
shocks are roughly responsible for 50% of the fluctuations in the short-run, the monetary side gradually
takes over. In the long-run the four shocks seem to play more or less at par, implying that fluctuations in
the price level may come from multiple sources with varying importance across the sample.

Figure 14.4 displays the historical decomposition for the model. Here again, a striking difference can
be observed for the decomposition of GDP fluctuations, compared to section 13.6. The fluctuations now
appear to be effectively shared between the different shocks across the sample, with a much larger weight
granted to money demand and real demand shocks. This is also true for the recent pandemic crisis, where
the decomposition suggests a non-negligible contribution of real demand shocks, both during te crisis and
its recovery.

The short-term interest rate remains dominated by the monetary components, the supply side taking the
bulk of the fluctuations, and the demand side playing the role of the minority complement. Real demand
and supply shocks play almost no role in interest rate determination.

Braod money fluctuations remained almost exclusively dominated by money supply shocks, with a some-
what limited contribution of money demand shocks. Real demand shocks hardly play any role, except
during the recent pandemic episode where, interstingly enough, they motivated the initial increase in
money mass and also the subsequent cut.
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Figure 14.4: Forecast error variance decomposition

CPI inflation finally exhibit a much more balanced view than in section 13.6, where supply shocks and
money demand shocks played almost no role. Here all the components play a significant role, with
varying importance across the sample. For instance, the low inflation of the 2010 decade can be seen as
a conjunction of negative money supply contributions (overly restrictive monetary policy) and negative
money demand components (insufficient demand for real money balance due to low economic activity).
In a very interesting way, the post-pandemic inflation episode now appears as a mix of money supply, real
demand, and supply components. This suggests that both the explanations of Bernanke and Blanchard
(2023) and Giannone and Primiceri (2023) are correct, but that none of them captures the full picture
individually.

Overall, the improved structural identification approach developed in this section makes the model much
more consistent with the stylized predictions of the IS-LM framework. Real demand and monetary shocks
play a significantly larger role at business cycle horizons, while the influence of the supply side diminishes.
Also, all the shocks contribute positively to economic activity, while supply shocks specifically contribute
to lower inflation and interest rates at short horizons.

To conclude the exercise, a brief scenario analysis is proposed. As the results obtained so far suggest a
strong impact of monetary shocks, one can expect to use monetary policy to enhance economic activity.
The exercise thus considers the impact of a substantial cut in the short-term interest rate, droping from 3%
at sample end to 2.5% over the next four quarters of the scenario, with an uncertainty of 0.2%. To make
sure that the observed cut is the result of monetary policy conducted by central authorities, the scenario
uses the structural conditional approach and restricts the conditions to be generated by money supply
shocks only.
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Figure 14.5 first plots the unconditional forecasts, that is, the forecasts obtained without scenario. The
proxy-SVAR model predicts a fall of the interest rate over the next four quarters, but not as steep as the
one set by the scenario. The short-term rate can be seen to end the prediction period at about 2.8%,
with relatively large credibility bands. To achieve this fall in the 3-month rate, the central authorities are
expected to increase the overall money supply over the period, to reach a 5% growth rate at the end of the
exercise. The expansionary monetary policy also results in improved economic activity with real GDP
growth rising to 1.6% at period end, a modest increase only. CPI inflation remains largely unchanged,
with a marginal and non-significant drop over the period stabilizing at 1.9%.

Figure 14.5: Regular forecasts

The scenario is fairly similar to the narrative of the unconditional forecasts, but with a significantly
stronger fall in the interest rate. It is thus expected that the qualitative effects will be similar, with mag-
nified quantitative responses. This is indeed what happens. Figure 14.6 reports the conditional forecasts
provided by the model.

The interest rate first displays a brutal drop to 2.5%, with 0.2% credibility bands indicating high certainty
in the scenario. To sustain this drop the monetary authorities operate a large increase in aggregate money,
with m3 growth reaching almost 6% at the end of the period. The strong move in the short rate triggers
this time both a large and immediate rise in real GDP growth, escalating then maintaining itself at a
2% rate over the period. This is significantly better than the mild 1.6% observed for the unconditional
forecasts. Interestingly enough, this strong expansionary monetary policy does not result in significantly
higher inflation, as one might have expected. Inflation remains low at about 2% and plateaus at this value
all along the period. Overall, this exercise suggests that there is room for monetary policy as a potent
stabilization tool, without an immediate concern on inflationary pressures.
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Figure 14.6: Conditional forecasts
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