Bayesian Time-Series Econometrics

Book 3 - mathematical background

Romain Legrand

First edition

Bayesian Time-Series Econometrics

(c) Romain Legrand 2021

All rights reserved. No parts of this book may be reproduced or modified in any form by any electronic or mechanical means (including photocopying, recording, or by any information storage and retrieval system) without permission in writing from the author.

Cover illustration: Thomas Bayes (d. 1761) in Terence O'Donnell, History of Life Insurance in Its Formative Years (Chicago: American Conservation Co:, 1936), p. 335.

To my wife, Mélanie.

To my sons, Tristan and Arnaud.

Contents

S Set theory 1
s. 1 Elementary concepts 1
s. 2 Unions and intersections 2
s. 3 Countable and uncountable sets 3
M Matrix algebra 11
m. 1 Elementary concepts 11
m. 2 Matrix operations: addition 12
m. 3 Matrix operations: subtraction 13
m. 4 Matrix operations: multiplication 13
m. 5 Matrix operations: inversion 16
m. 6 Matrix operations: transposition 19
m. 7 Some special matrices 20
m. 8 Kronecker products 26
m. 9 Matrix rank 27
m. 10 Matrix trace 28
m. 11 Matrix vectorization 28
m. 12 Eigenvalues and eigenvectors 29
m. 13 Matrix definiteness 31
m. 14 Partitioned matrices 32
D Statistical distributions 35
d. 1 Discrete uniform 36
d. 2 Bernoulli 38
d. 3 Categorical 40
d. 4 Binomial 42
d. 5 Multinomial 44
d. 6 Poisson 46
d. 7 Uniform 49
d. 8 Normal 52
d. 9 Multivariate normal 55
d. 10 Matrix normal 59
d. 11 Student 62
d. 12 Multivariate Student 65
d. 13 Matrix Student 68
d. 14 Truncated normal 72
d. 15 Gamma 74
d. 16 Wishart 77
d. 17 Inverse gamma 79
d. 18 Inverse Wishart 82
d. 19 Beta 84
d. 20 Dirichlet 87
References 89

CHAPTER S

Set theory

s. 1 Elementary concepts

In mathematics, sets are used to describe groups of objects. Formally:
definition s.1: a set is a collection of elements.

The elements in question can be anything, but typically they are mathematical objects such as numbers or symbols. To denote a set, it is customary to list its elements within curly brackets $\}$.
example s.1: the set A containing the numbers 1,2 and 3 is denoted by $A=\{1,2,3\}$.
Sets can be defined in a more systematic way by describing their elements. This is done by using indifferently the notations | or : which stand for "such that".
example s.2: the set containing the numbers that are smaller than 3 can be denoted by $A=\{x \mid x<3\}$ or $A=\{x: x<3\}$.

To indicate that some element x is a member of set A, one writes $x \in A$, which reads " x belongs to A ". Conversely, to denote the fact that x is not a member of A, one writes $x \notin A$.
example s.3: if $\mathrm{A}=\{1,2,3\}$, then $2 \in A$, but $5 \notin A$.
Two fundamental concepts in set theory are that of subsets and supersets:
definition s.2: given two sets A and B, A is a subset of B, denoted by $A \subseteq B$, if every member of A is also a member of B. If A is a subset of B, then B is a superset of A.

For instance:
example s.4: let $A=\{2,4\}$ and $B=\{1,2,3,4,5\}$. Then $A \subseteq B$. A is a subset of B, and B is a superset of A.
example s.5: let $A=\{x: x<3\}$, the set of numbers smaller than 3 , and let $B=\{x: x<5\}$, the set of numbers smaller than 5 . Then $A \subseteq B$. A is a subset of B, and B is a superset of A.
example s.6: let $A=\{1,2,3\}$ and $B=\{1,2,3\}$, so that $A=B$. Then $A \subseteq B$ and $B \subseteq A$. A and B are at the same time subset and superset of each other. Thus, subsets and supersets include the case of equal sets.

There exist two sets of special interest, called the empty set and the universal set.
definition s.3: the empty set is the set that contains no element. It is denoted by \varnothing.

At the other end of the spectrum, the universal set is defined as:
definition s.4: the universal set is the set that contains all possible elements, in a given context.

Any set we might consider is a subset of the universal set. The empty set and the universal sets are also important for the definition of the notion of complement. The latter is defined as:
definition s.5: If A is some set, then the complement of A, denoted by A^{c}, is the set containing all the elements of the universal set that are not in A. Formally, if A is some set, and X denotes the universal set, then $A^{c}=\{x \in X: x \notin A\}$.

For example:

example s.7: if we let the universal set be $X=\{1,2,3,4,5,6,7,8\}$, and A be the set $A=\{2,4,5\}$ then the complement of A is $A^{c}=\{1,3,6,7,8\}$.
example s.8: let $A=\{x: x<3\}$, the set of numbers smaller than 3 . Then if the universal set X is the set of all numbers, $A^{c}=\{x: x \geq 3\}$, the set of numbers greater than or equal to 3 .

In examples s. 7 and s.8, the universal set was explicitly described. Most of the time however the universal set is only implicit and used as an underlying element defining the complement of a set A as "everything that is not in A ".

s. 2 Unions and intersections

Operations on sets are realised through the concepts of unions and intersections. Set unions are defined as follows:
definition s.6: let A and B be two sets; the union of A and B, denoted by $A \cup B$, is the set of all elements that are either in A or in B (or in both). Formally: $A \cup B=\{x: x \in A$ or $x \in B\}$.

For example:

example s.9: let $A=\{1,2,3\}$ and $B=\{3,4,5\}$; then $A \cup B=\{1,2,3,4,5\}$.
example s.10: let $A=\{x: 2<x<6\}$, the set of numbers comprised between 2 and 6, and let $B=\{x: 4<$ $x<8\}$, the set of numbers comprised between 4 and 8 . Then $A \cup B=\{x: 2<x<8\}$, the set of numbers comprised between 2 and 8 .

The counterpart of the concept of union is that intersection. Set intersection is defined as follows:
definition s.7: let A and B be two sets; the intersection of A and B, denoted by $A \cap B$, is the set of all elements that are both in A and in B. Formally: $A \cap B=\{x: x \in A$ and $x \in B\}$.

For example:
example s.11: let $A=\{1,2,3\}$ and $B=\{3,4,5\}$; then $A \cap B=\{3\}$.
example s.12: let $A=\{x: 2<x<6\}$, the set of numbers comprised between 2 and 6 , and let $B=\{x: 4<$ $x<8\}$, the set of numbers comprised between 4 and 8 . Then $A \cap B=\{x: 4<x<6\}$, the set of numbers comprised between 4 and 6 .

Two sets which have no elements in common are called disjoint sets:
definition s.8: two sets A and B are disjoint if they have no element in common, that is, if $A \cap B=\varnothing$.

For example:
example s.13: let $A=\{1,2,3\}$ and $B=\{4,5,6\}$; then $A \cap B=\varnothing$, so A and B are disjoint.
Notations for multiple unions and intersections can be used to avoid cumbersome writing.
definition s.9: let $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ be some sets. Then the multiple union of those sets is denoted by: $\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup A_{3} \cup \ldots \cup A_{n}$.

Also:
definition s.10: let $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ be some sets. Then the multiple intersection of those sets is denoted by: $\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap A_{3} \cap \ldots \cap A_{n}$.

For example:
example s.14: let $A_{1}=\{1,2,3,4,5\}, A_{2}=\{2,3,4,5,6\}$ and $A_{3}=\{3,4,5,6,7\}$; then:
$\bigcup_{i=1}^{3} A_{i}=\{1,2,3,4,5,6,7\}$ and $\bigcap_{i=1}^{3} A_{i}=\{3,4,5\}$.
example s.15: let $A_{1}=\{x: 2<x<6\}, A_{2}=\{x: 3<x<7\}$ and $A_{3}=\{x: 4<x<8\}$; then:
$\bigcup_{i=1}^{3} A_{i}=\{x: 2<x<8\}$ and $\bigcap_{i=1}^{3} A_{i}=\{x: 4<x<6\}$.

s. 3 Countable and uncountable sets

The notion of countability plays an important role in statistical theory, in particular when discussing random variables. Indeed, it is countability which determines the nature of random variables, discrete or continuous. Countable sets of outcomes produce discrete random variables, while uncountable sets of outcome result in continuous random variables. Before discussing this concept formally, it is useful to introduce some very famous sets.
definition s.11: the set of natural numbers, denoted by \mathbb{N}, is the set of positive whole numbers (or counting numbers). That is, $\mathbb{N}=\{1,2,3, \ldots\}$.

Some textbooks also include 0 in the natural numbers. Most commonly however 0 is excluded, and this choice is retained here.

A natural extension of the natural numbers is the set of integer numbers:
definition s.12: the set of integers, denoted by \mathbb{Z}, is the set of all whole numbers, positive, negative and zero. That is, $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

The set of integers provides a convenient way to denote the set of natural numbers plus zero:
definition s.13: the set of non-negative integers, denoted by \mathbb{Z}^{*}, is the set of all non-negative whole numbers. That is, $\mathbb{Z}^{*}=\{0,1,2,3, \ldots\}$.

It is clear that $\mathbb{Z}^{*}=0 \cup \mathbb{N}$, and thus represents only a shortcut notation. With the set of integers, it is possible to define the set of rational numbers:
definition s.14: the set of rational numbers, denoted by \mathbb{Q}, is the set of all numbers which can be written as the quotient (or ratio) of two integers. That is, $\mathbb{Q}=\left\{\frac{x}{y}: x \in \mathbb{Z}, y \in \mathbb{Z}, y \neq 0\right\}$.

It may seem at first that the set of rational numbers can describe any possible number. But this is not true: certain numbers like $\sqrt{2}$ or π for instance cannot be written as the ratio of two integers, and are hence not rational numbers. This leads to the following definition:
definition s.15: an irrational number is a number which cannot be written as the ratio of two integers.

Irrational numbers are important because they provide the final element required to define the set of real numbers. Loosely speaking, one can see the set of real numbers as the set containing all numbers. The formal definition goes as follows:
definition s.16: the set of real numbers, denoted by \mathbb{R}, is the set of all rational and irrational numbers.

From the above definitions, it should be clear that the natural, integer, rational and real numbers represent nested sets of numbers, namely: $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$.

As a preliminary to the incoming discussion on countability, it is also useful to introduce the notion of finiteness:
definition s.17: a set A is finite if there exists some natural number $n \in \mathbb{N}$ such that the cardinality (number of elements) of A is equal to n. A set which is not finite is infinite .

A trivial way to reformulate the above definition is to state that a set is finite if it contains a finite number of elements. Otherwise, it is infinite. For example:
example s.16: the set $A=\{5,6,7\}$ is finite, since its cardinality is 3 (it contains 3 elements); on the other hand, $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} are examples of infinite sets.

It is now possible to introduce the notion of countability of a set.
definition s.18: a set A is countable if there exists a bijection from A to \mathbb{N} (or some subset of \mathbb{N}). A set which is not countable is said to be uncountable .

Let us clarify this definition. First, a bijection is a function such that to each value x of the domain corresponds a unique value $f(x)$ of the codomain, and vice versa such that to each value y of the codomain corresponds a unique value $f^{-1}(y)$ of the domain. Figure s. 1 makes the point. The function displayed on panel (a) is a bijection since for each possible value y of the codomain corresponds a unique value $x=f^{-1}(y)$, and vice versa. The function displayed on panel (b) on the other hand is not a bijection since for a given value y of the codomain correspond two possible values $f^{-1}(y)=x_{1}$ and x_{2}.

Figure s.1: bijective and non-bijective functions

It is now possible to go back to the definition of a countable set. Simply speaking, it says that a set is countable if its elements can be enumerated. In other words, a set A is countable if one can create a list of its elements, and assign to each of these elements a unique position in this list (" $1^{\text {st }}$ element of the list", " 2 nd element of the list", and so on).

The use of a bijective function simply represents a formal way to draw the list, the domain being the elements of A, and the codomain being the position in the list ($1,2,3$ and so on, hence the set \mathbb{N} for the codomain). As the function is bijective, it guarantees that each element in the set is associated to a unique position in the list, and vice versa that each position in the list corresponds to a single element in A. It does not matter if the list is infinite. Infinite sets result in infinite lists, in which case the function spans the whole of \mathbb{N}. On the other hand, finite sets result in a finite list and hence span only some subset of \mathbb{N}.

With this definition, it is possible to discuss the countability of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R}, starting with the set of natural numbers \mathbb{N} :
property s.1: the set of natural numbers \mathbb{N} is countable.
proof: to prove the result, it must be possible to create a list of the elements in \mathbb{N}, and assign to each of these elements a unique position in this list. In the case of the natural numbers, this is quite trivial since it amounts to creating a mapping from \mathbb{N} to \mathbb{N}. The resulting list is displayed in Table s.1:

List of elements in \mathbb{N} (domain of the injection: \mathbb{N})	Position in the list (codomain of the injection: \mathbb{N})
1	1
2	2
3	3
4	4
\vdots	\vdots

Table s.1: bijection for the countability of \mathbb{N}

Next, establish the countability of the set of integers \mathbb{Z} :
property s.2: the set of integer numbers \mathbb{Z} is countable.
proof: again, to prove the result, one creates a list of the elements in \mathbb{Z} and assign to each of these elements a unique position in this list. This is hardly more complicated than in the case of the natural numbers \mathbb{N}. Zero must be included in the list, and because \mathbb{Z} also include the negative whole numbers, the enumeration must alternate between positive and negative values. The resulting list is displayed in Table s.2:

List of elements in \mathbb{Z} (domain of the injection: \mathbb{Z})	Position in the list (codomain of the injection: \mathbb{N})
0	1
1	2
-1	3
2	4
-2	5
3	6
-3	7
\vdots	\vdots

Table s.2: bijection for the countability of \mathbb{Z}
Next, consider the set of rational numbers \mathbb{Q} :
property s.3: the set of rational numbers \mathbb{Q} is countable.
proof: to prove the result, create a list of the elements in \mathbb{Q}, and assign to each of these elements a unique position in this list. This is a bit more complicated for \mathbb{Q} than it is for \mathbb{N} and \mathbb{Z}. The strategy consists in identifying all possible fractions $\frac{a}{b}$, with $a, b \in \mathbb{N}$ and then select those fractions in a systematic way to ensure all rational numbers are covered in the process. To do so, the following table is used:

Table s.3: ordered pairs (a, b) of natural numbers

It should be clear that this process records any possible positive rational number: $\frac{a}{b}$ will be found in row a, column b of the table. Following the arrow path then ensures that all the entries are covered at some point of the enumeration. What remains to do to complete the list of rational numbers \mathbb{Q} is to include the entry $0=\frac{0}{1}$, add the negative counterpart of each positive fraction, and get rid of the duplicates (for instance, $\frac{2}{2}$ and $\frac{1}{1}$ are the same number). This produces the following list of rational numbers:

List of elements in \mathbb{Q} (domain of the injection: \mathbb{Q})	Position in the list (codomain of the injection: \mathbb{N})
$\frac{0}{1}$	1
$\frac{1}{1}$	2
$-\frac{1}{1}$	3
$\frac{2}{1}$	4
$-\frac{2}{1}$	5
$\frac{1}{2}$	6
$-\frac{1}{2}$	7
$\frac{1}{3}$	6
$-\frac{1}{3}$	7
$\frac{3}{1}$	8
$-\frac{3}{1}$	9
\vdots	\vdots

Table s.4: bijection for the countability of \mathbb{Q}

Consider finally \mathbb{R}, the set of real numbers. As stated previously, the real numbers extend the rational numbers by integrating both rational and irrational numbers. It may seem intuitively that most numbers can be written as rational numbers, so that irrational numbers represent an exception. In fact, the contrary is true: most numbers cannot be written as rational numbers, and there are considerably more real numbers than rational numbers. The real numbers are in fact so many that it is not possible to count them. This establishes the next result:
property s.4: the set of real numbers \mathbb{R} is uncountable.
proof: the proof relies on the so-called Cantor diagonal argument. It proceeds by contradiction: it assumes that \mathbb{R} is countable, and then shows that this assumption cannot be true. So, suppose it is possible to draw a list of all real numbers. Then the list of real numbers with integer part 0 would look like this:

List of elements in \mathbb{R} (domain of the injection: \mathbb{R})	Position in the list (codomain of the injection: \mathbb{N})
$0 \cdot x_{11} x_{12} x_{13} x_{14} \ldots$	1
$0 . x_{21} x_{22} x_{23} x_{24} \ldots$	2
$0 . x_{31} x_{32} x_{33} x_{34} \ldots$	3
$0 . x_{41} x_{42} x_{43} x_{44} \ldots$	4
\vdots	\vdots

Table s.5: bijection for the countability of \mathbb{R} (assumption)
Now consider the real number $y=0 . y_{1} y_{2} y_{3} y_{4} \ldots$ constructed in the following way: y_{1} is any digit except x_{11}, y_{2} is any digit except x_{22}, and in general y_{n} is any digit except $x_{n n}$ (the bold diagonal terms in Table s.5). Then clearly y is not equal to any number in the list since it has at least one digit that differs with each number. Therefore, the assumed list of real numbers cannot be complete, which results in a contradiction.

This concludes the discussion on the countability of the major sets of numbers. Some additional results on countability are now introduced.
property $\mathbf{~} .5$: let A be some finite set; then A is countable.
proof: because A is finite, it contains n elements, for some $n \in \mathbb{N}$. Following, it is possible to associate to each of the n elements in A a unique natural number between 1 and n. This defines a bijection from A to a subset of \mathbb{N}, hence A is countable.

Though finiteness implies countability, finite and countable are not equivalent notions. Many infinite sets are countable, for instance \mathbb{N}, \mathbb{Z} and \mathbb{Q}, as previously established. The next results discuss the countability of subsets.
property s.6: let A be some countable set; if $B \subseteq A$, then B is countable. In other words, the subset of a countable set is itself countable.
proof: only a sketch of the proof is provided. Because B is a subset of A, every element in B also lies in A. Also, because A is countable, there exists a bijection from A to \mathbb{N}. This means that for each element in A, there exists a unique associated natural number. Then for each element of B, consider the corresponding element in A, and the corresponding associated natural number from the bijection. Doing so, one defines a bijection from B to a subset of \mathbb{N}, hence B is countable.

To introduce the final result on subsets, it is necessary to define first the notions of closed and open intervals:
definition s.19: let a and b be two real numbers; then the closed interval $[a, b]$ is the set $[a, b]=\{x \in$ $\mathbb{R}: a \leq x \leq b\}$, and the open interval (a, b) is the set $(a, b)=\{x \in \mathbb{R}: a<x<b\}$.

Roughly speaking, a closed interval is an interval which includes its endpoints, while an open interval excludes them. Intervals need not be fully closed or open, yet. One can also find the half-open (or halfclosed) intervals $[a, b)=\{x \in \mathbb{R}: a \leq x<b\}$ and $(a, b]=\{x \in \mathbb{R}: a<x \leq b\}$. The final result of this chapter discusses the countability of intervals:
property s.7: let a and b be two real numbers with $a<b$; then the closed interval $[a, b]$, the open interval (a, b) and the half-open intervals $[a, b)$ and $(a, b]$ are uncountable.
proof: the easiest way to prove the above result is to rely, again, on the Cantor diagonal argument. First, one notes that for every interval $[a, b],(a, b),[a, b)$ or $(a, b]$ it is possible to define some subset (c, d) such that all elements in (c, d) share the same integer part z and the same first n decimals $d_{1}, d_{2}, \ldots, d_{n}$. In other words, $(c, d)=\left\{x \in \mathbb{R}: x=z . d_{1} d_{2} \ldots d_{n}<x<z . d_{1} d_{2} \ldots\left(d_{n}+1\right)\right\}$. For instance, for the closed interval $[a, b]=\{x \in \mathbb{R}: 2.34 \leq x \leq 2.37\}$, it is possible to define $(c, d)=\{x \in \mathbb{R}: 2.35<x<2.36\}$, with integer part $z=2$, and decimal parts $d_{1}=3$ and $d_{2}=5$. The strategy then consists in using the Cantor diagonal argument on the sub-interval (c, d). Assume hence that (c, d) is countable, so that it is possible to draw a list of all real numbers on (c, d). This list would look like this:

List of elements in (c, d) (domain of the injection: (c, d))	Position in the list (codomain of the injection: \mathbb{N})
$z . d_{1} d_{2} \ldots d_{n} x_{1(n+1)} x_{1(n+2)} x_{1(n+3)} x_{1(n+4)} \ldots$	1
$z . d_{1} d_{2} \ldots d_{n} x_{2(n+1)} x_{2(n+2)} x_{2(n+3)} x_{2(n+4)} \ldots$	2
$z . d_{1} d_{2} \ldots d_{n} x_{3(n+1)} x_{3(n+2)} x_{3(n+3)} x_{3(n+4)} \ldots$	3
$z . d_{1} d_{2} \ldots d_{n} x_{4(n+1)} x_{4(n+2)} x_{4(n+3)} x_{4(n+4)} \ldots$	4
\vdots	\vdots

Table s.6: bijection for the countability of (c, d) (assumption)
Now consider the real number $y=z . d_{1} d_{2} \ldots d_{n} y_{(n+1)} y_{(n+2)} y_{(n+3)} \ldots$ constructed in the following way: $y_{(n+1)}$ is any digit except $x_{1(n+1)}, y_{(n+2)}$ is any digit except $x_{2(n+2)}$, and in general $y_{(n+i)}$ is any digit except $x_{i(n+i)}$ (the bold diagonal terms in Table s.6). Then clearly y is not equal to any number in the list since it has at least one digit that differs with each number. Therefore, the assumed list of (c, d) cannot be complete, which results in a contradiction. Hence (c, d) is uncountable, so that the intervals $[a, b],(a, b),[a, b)$ and $(a, b]$ are also uncountable.

CHAPTER M

Matrix algebra

m. 1 Elementary concepts

At the basis of matrix algebra lies a class of objects called matrices. A matrix is defined as follows:
definition m.1: a matrix is a rectangular array of numbers or symbols.

For example:

example m.1:

Let: $\quad A=\left(\begin{array}{rrr}3 & 0 & -2 \\ -1 & 2 & 3 \\ 0 & 3 & 1\end{array}\right) \quad B=\left(\begin{array}{rr}2 & 1 \\ 0 & 0 \\ -1 & 4 \\ 7 & 3\end{array}\right) \quad C=\left(\begin{array}{rrr}-5 & 0 & 3 \\ 1 & -3 & 0\end{array}\right)$
A, B and C are examples of matrices.
It is conventional to use regular brackets () to wrap the elements of a matrix, but sometimes square brackets [] and even curly brackets $\}$ can also be used.

It is customary to describe a matrix by its dimension, namely its number of rows and columns. For a matrix with m rows and n columns, one uses the notation " $m \times n$ ", which reads " m by n ".
example m. 2 :
Let: $\quad A=\left(\begin{array}{rrr}3 & 0 & -2 \\ -1 & 2 & 3 \\ 0 & 3 & 1\end{array}\right) \quad B=\left(\begin{array}{rr}2 & 1 \\ 0 & 0 \\ -1 & 4 \\ 7 & 3\end{array}\right) \quad C=\left(\begin{array}{rrr}-5 & 0 & 3 \\ 1 & -3 & 0\end{array}\right)$
A is a 3×4 matrix, B is a 4×2 matrix, while C is a 2×3 matrix.

It is useful to introduce some specific terminologies about matrix dimension.
definition m.2: a matrix of dimension $m \times 1$ is called a column vector ; a matrix of dimension $1 \times m$ is called a row vector ; a matrix of dimension 1×1 is called a scalar .

As the name suggests, a column vector is a matrix made of a single column, while a row vector is a matrix made of a single row. A scalar is simply an individual number, which is equivalent to a 1×1 matrix. By convention, the word "vector" is often used as a shortcut to designate a column vector. On the other hand, the full expression "row vector" is usually employed in order to avoid any ambiguity.

example m.3:

Let: $\quad A=\left(\begin{array}{rrr}-1 & 3 & 0 \\ 4 & -2 & 6\end{array}\right) \quad b=\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right) \quad c=\left(\begin{array}{llll}4 & 3 & -2 & 0\end{array}\right) \quad d=(2)$.
A is a matrix, b is a (column) vector, c is a row vector, and d is a scalar.

As can be seen from example m.3, it is customary to use capital blocks to denote matrices, and lower blocks to denote vectors and scalars.

Sometimes, it is useful to designate specific elements in a matrix.
definition m.3: the (i, j) entry of a matrix is the number found in row i, column j of this matrix.

The convention to denote entries is to use the name of the matrix written in lower case, and associate to it the index (i, j) of the entry as a subscript. For instance, if A is a matrix, then the entry (i, j) of A will be written as $a_{i j}$.

example m.4:

Let: $\quad A=\left(\begin{array}{rrrr}8 & 6 & 0 & 3 \\ 5 & 7 & -4 & 0 \\ 9 & 3 & -3 & -5\end{array}\right)$
Then $a_{12}=6, a_{22}=7$ and $a_{34}=-5$.

In general, it is possible to express a $m \times n$ matrix in terms of its entries as:
$B=\left(\begin{array}{rrrr}b_{11} & b_{12} & \ldots & b_{1 n} \\ b_{21} & b_{22} & \ldots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m 1} & b_{m 2} & \ldots & b_{m n}\end{array}\right)$

m. 2 Matrix operations: addition

Similarly to numbers, operations can be defined on matrices. The most basic of these operations is matrix addition:
definition m.4: let A and B be two matrices of similar dimension $m \times n$; then the matrix addition of A and B is the $m \times n$ matrix $A+B$ such that $(a+b)_{i j}=a_{i j}+b_{i j}$. In other words:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)+\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \ldots & b_{m n}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \ldots & a_{m n}+b_{m n}
\end{array}\right)
$$

Matrix addition exists only if the matrices involved are of similar dimension, that is, share the same number of rows and columns. Otherwise, it is not defined.

example m.5:

Let: $\quad A=\left(\begin{array}{rrr}2 & 3 & 0 \\ -1 & 4 & -3\end{array}\right) \quad B=\left(\begin{array}{rrr}1 & 0 & 8 \\ -2 & 3 & 1\end{array}\right) \quad C=\left(\begin{array}{rr}-3 & 4 \\ 7 & -1\end{array}\right)$
Then: $\quad A+B=\left(\begin{array}{rrr}2 & 3 & 0 \\ -1 & 4 & -3\end{array}\right)+\left(\begin{array}{rrr}1 & 0 & 8 \\ -2 & 3 & 1\end{array}\right)=\left(\begin{array}{rrr}2+1 & 3+0 & 0+8 \\ -1-2 & 4+3 & -3+1\end{array}\right)=\left(\begin{array}{rrr}3 & 3 & 8 \\ -3 & 7 & -2\end{array}\right)$
On the other hand, the operations $A+C$ and $B+C$ are not defined since the matrix dimensions don't agree.

Matrix addition has the following properties:
property m.1: let A and B be matrices such that $A+B$ is defined; then $A+B=B+A$ (commutative property).
property m.2: let A, B and C be matrices such that $A+B+C$ is defined; then $(A+B)+C=A+(B+C)$ (associative property).

m. 3 Matrix operations: subtraction

Matrix subtraction is simply the counterpart of matrix addition.
definition m.5: let A and B be two matrices of similar dimension $m \times n$; then the matrix subtraction of A and B is the $m \times n$ matrix $A-B$ such that $(a-b)_{i j}=a_{i j}-b_{i j}$. In other words:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)-\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \ldots & b_{m n}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11}-b_{11} & a_{12}-b_{12} & \ldots & a_{1 n}-b_{1 n} \\
a_{21}-b_{21} & a_{22}-b_{22} & \ldots & a_{2 n}-b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}-b_{m 1} & a_{m 2}-b_{m 2} & \ldots & a_{m n}-b_{m n}
\end{array}\right)
$$

Similarly to matrix addition, matrix subtraction exists only if the matrices involved are of similar dimension. Otherwise, it is not defined.

example m.6:

Let: $\quad A=\left(\begin{array}{rrr}5 & -2 & 1 \\ -3 & 3 & 0\end{array}\right) \quad B=\left(\begin{array}{lll}0 & 7 & 4 \\ 4 & 1 & 2\end{array}\right) \quad C=\left(\begin{array}{rr}2 & -1 \\ 5 & 1\end{array}\right)$
Then:

$$
A-B=\left(\begin{array}{rrr}
5 & -2 & 1 \\
-3 & 3 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 7 & 4 \\
4 & 1 & 2
\end{array}\right)=\left(\begin{array}{rrr}
5-0 & -2-7 & 1-4 \\
-3-4 & 3-1 & 0-2
\end{array}\right)=\left(\begin{array}{rrr}
5 & -9 & -3 \\
-7 & 2 & -2
\end{array}\right)
$$

On the other hand, the operations $A-C$ and $B-C$ are not defined since the matrix dimensions don't agree.

m. 4 Matrix operations: multiplication

Matrix multiplication constitutes the next step after matrix addition and matrix subtraction. The simplest version of matrix multiplication is the scalar multiplication:
definition m.6: let a be some scalar, and let B be some $m \times n$ matrix; then the scalar multiplication $a B$ is the $m \times n$ matrix such that $(a b)_{i j}=a \times b_{i j}$. In other words:

$$
a\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 p} \\
b_{21} & b_{22} & \ldots & b_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n p}
\end{array}\right)=\left(\begin{array}{cccc}
a b_{11} & a b_{12} & \ldots & a b_{1 n} \\
a b_{21} & a b_{22} & \ldots & a b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a b_{m 1} & a b_{m 2} & \ldots & a b_{m n}
\end{array}\right)
$$

For instance:

example m.7:

Let: $\quad a=3 \quad B=\left(\begin{array}{rrr}2 & -1 & -2 \\ 1 & 3 & 0\end{array}\right)$
The scalar multiplication $a B$ is given by:
$a B=(3)\left(\begin{array}{rrr}2 & -1 & -2 \\ 1 & 3 & 0\end{array}\right)=\left(\begin{array}{rrr}3 \times 2 & 3 \times(-1) & 3 \times(-2) \\ 3 \times 1 & 3 \times 3 & 3 \times 0\end{array}\right)=\left(\begin{array}{rrr}6 & -3 & -6 \\ 3 & 9 & 0\end{array}\right)$
Multiplication with the scalar multiplication works much like matrix addition or subtraction: the operation is realised on pairwise elements of the two matrices. This simple logic only applies when the first matrix is a scalar. Matrix multiplication in general is more complicated, and is defined as follows:
definition m.7: let A be some $m \times n$ matrix, and let B be some $n \times k$ matrix; then the matrix product
$A B$ is the $m \times k$ matrix such that $(a b)_{i j}=\sum_{h=1}^{n} a_{i h} b_{h j}$. In other words:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 k} \\
b_{21} & b_{22} & \ldots & b_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n k}
\end{array}\right)=\left(\begin{array}{cccc}
\sum_{h=1}^{n} a_{1 h} b_{h 1} & \sum_{n=1}^{n} a_{1 h} b_{h 2} & \ldots & \sum_{h=1}^{n} a_{1 h} b_{h k} \\
\sum_{h=1}^{n} a_{2 h} b_{h 1} & \sum_{h=1}^{n} a_{2 h} b_{h 2} & \ldots & \sum_{h=1}^{n} a_{2 h} b_{h k} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{h=1}^{n} a_{m h} b_{h 1} & \sum_{h=1}^{n} a_{m h} b_{h 2} & \ldots & \sum_{h=1}^{n} a_{m h} b_{h k}
\end{array}\right)
$$

The definition implies that for a matrix product $A B$ to be defined, A must be $m \times n$, and B must be $n \times k$. In other words, the number of columns of the first matrix must be equal to the number of rows of the second matrix. Otherwise, the product is not defined.

example m.8:

Let: $\quad A=\left(\begin{array}{rrr}-1 & 2 & 6 \\ 0 & -2 & 1\end{array}\right) \quad B=\left(\begin{array}{rr}4 & -1 \\ 3 & 2 \\ -2 & 4\end{array}\right) \quad C=\left(\begin{array}{rr}-2 & 3 \\ 1 & 2\end{array}\right)$
The matrix product $A B$ is defined, since A has 3 columns and B has 3 rows. Similarly, the product $B C$ is defined, since B has 2 columns and C has 2 rows. The matrix product $A C$ is not defined however, since A has 3 columns while C has 2 rows.

When A is $m \times n$ and B is $n \times k$, the product $A B$ is well defined. In this case, the resulting matrix is $n \times k$. That is, the matrix resulting from the product $A B$ has a number of rows equal to the number of rows of A, and a number of columns equal to the number of columns of B.

example m.9:

Let: $\quad A=\left(\begin{array}{rrr}2 & -2 & 3 \\ 1 & 0 & -4\end{array}\right) \quad B=\left(\begin{array}{r}2 \\ -1 \\ 5\end{array}\right)$.
A has 3 columns and B has 3 rows. Hence the product $A B$ is defined. Since A has 2 rows and B has 1 column, the matrix resulting from the product $A B$ will be of dimension 2×1.

The final step consists in computing the product itself. When the product $A B$ is defined, the entry of row i, column j of $A B$ is obtained by calculating the product of row i of A with column j of B.

example m.10:

Let: $\quad A=\left(\begin{array}{rrr}3 & 1 & -1 \\ 3 & -2 & 2\end{array}\right) \quad B=\left(\begin{array}{rr}0 & 1 \\ 4 & -1 \\ 6 & 0\end{array}\right)$
A has 3 columns and B has 3 rows, hence the product $A B$ is defined. A has 2 rows and B has 2 columns, hence the matrix resulting from the product $A B$ is of dimension 2×2.

The entry of row 1 , column 1 of the product $A B$ is obtained by multiplying row 1 of matrix A with column 1 of matrix $B:(a b)_{11}=\sum_{h=1}^{3} a_{1 h} b_{h 1}=3 \times 0+1 \times 4-1 \times 6=-2$
Similarly, the entry of row 1 , column 2 of the product $A B$ is obtained by multiplying row 1 of matrix A with column 2 of matrix $B:(a b)_{12}=\sum_{h=1}^{3} a_{1 h} b_{h 2}=3 \times 1+1 \times(-1)-1 \times 0=2$.
Continuing in a similar fashion for the two remaining entries, the complete product obtains as:
$A B=\left(\begin{array}{rrr}3 & 1 & -1 \\ 3 & -2 & 2\end{array}\right)\left(\begin{array}{rr}0 & 1 \\ 4 & -1 \\ 6 & 0\end{array}\right)=\left(\begin{array}{rr}-2 & 2 \\ 4 & 5\end{array}\right)$
Matrix product is not commutative: in general $A B \neq B A$. In fact, $B A$ may not even be defined, even though $A B$ is.

A number of convenient properties apply to scalar multiplication and matrix products, and are now introduced to conclude this section:
property m.3: let a be some scalar, and let B and C be matrices such that $B C$ is defined.
Then $a(B C)=(a B) C=B(a C)=(B C) a$ (associative property of scalar multiplication).
property m.4: let a be some scalar, and let B and C be matrices such that $B+C$ is defined.
Then $a(B+C)=a B+a C=B a+C a=(B+C) a$ (distributive property of scalar multiplication).
property m.5: let A, B and C be matrices such that $A B C$ is defined.
Then $A B C=(A B) C=A(B C)$ (associative property of matrix product).
property m.6: let A, B and C be matrices such that $A B, A C$ and $B+C$ are defined.
Then $A(B+C)=A B+A C$ (left distributivity).
property m.7: let A, B and C be matrices such that $A C, B C$ and $A+B$ are defined.
Then $(A+B) C=A C+B C$ (right distributivity).

m. 5 Matrix operations: inversion

Strictly speaking, division is not defined for matrices. The closest equivalent is the concept of matrix inversion. Before discussing inversion however, it is necessary to introduce an important type of matrices.
definition m.8: the identity matrix of size n, denoted by I or sometimes I_{n} to stress the dimension, is the $n \times n$ matrix that has 1 entries on its main diagonal, and 0 entries everywhere else. In other words:

$$
I_{n}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

For instance:
example m.11: The identity matrices of size 2 and 4 are given by:
$I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad I_{4}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
The remarkable property of the identity matrix is that any matrix pre or post-multiplied by it is left unchanged. That is, if A is a $m \times n$ matrix, then $I_{m} A=A$ and $A I_{n}=A$. In this sense, the identity matrix represents the equivalent of a multiplication by 1 in the case of scalars.

example m.12:

Let: $\quad A=\left(\begin{array}{rrr}0 & -1 & 4 \\ 7 & -1 & -3\end{array}\right)$
Then, computing the products, one can verify that:
$I_{2} A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{rrr}0 & -1 & 4 \\ 7 & -1 & -3\end{array}\right)=\left(\begin{array}{rrr}0 & -1 & 4 \\ 7 & -1 & -3\end{array}\right)$
and
$A I_{3}=\left(\begin{array}{rrr}0 & -1 & 4 \\ 7 & -1 & -3\end{array}\right)\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{rrr}0 & -1 & 4 \\ 7 & -1 & -3\end{array}\right)$
It is then possible to introduce the concept of matrix inverse:
definition m.9: let A be some $n \times n$ matrix. Then if it exists, the inverse of A, denoted by A^{-1}, is the $n \times n$ matrix such that $A A^{-1}=A^{-1} A=I_{n}$.

The following example illustrates the definition:

example m.13:

Let: $\quad A=\left(\begin{array}{rr}-2 & -5 \\ 1 & 3\end{array}\right)$
Then the inverse of A is given by:
$A^{-1}=\left(\begin{array}{rr}-3 & -5 \\ 1 & 2\end{array}\right)$

Indeed, it is immediate to check that:
$A A^{-1}=\left(\begin{array}{rr}-2 & -5 \\ 1 & 3\end{array}\right)\left(\begin{array}{rr}-3 & -5 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
and
$A^{-1} A=\left(\begin{array}{rr}-3 & -5 \\ 1 & 2\end{array}\right)\left(\begin{array}{rr}-2 & -5 \\ 1 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
The next example illustrates the equivalence between scalar division and matrix inversion:
example m.14: one of the main interest of matrix inversion lies the resolution of systems of linear equations. Consider the following system of linear equations:
$x_{1}+3 x_{3}=1$
$2 x_{2}-x_{3}=2$
$x_{1}+3 x_{2}+x_{3}=3$
This system can be reformulated in matrix form as:
$\left(\begin{array}{rrr}1 & 0 & 3 \\ 0 & 2 & -1 \\ 1 & 3 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}4 \\ 2 \\ 3\end{array}\right)$
Or $A x=b$, with:
$A=\left(\begin{array}{rrr}1 & 0 & 3 \\ 0 & 2 & -1 \\ 1 & 3 & 1\end{array}\right) \quad x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \quad b=\left(\begin{array}{l}4 \\ 2 \\ 3\end{array}\right)$
If both sides of the system are pre-multiplied by A^{-1}, one obtains:
$A^{-1} A x=A^{-1} b \quad \Rightarrow \quad I x=A^{-1} b \quad \Rightarrow \quad x=A^{-1} b$
In other words, the value of x that satisfies the system of equations can be obtained directly from the inverse A^{-1}. It is readily verifiable that A^{-1} is given by:
$A^{-1}=\left(\begin{array}{rrr}-5 & -9 & 6 \\ 1 & 2 & -1 \\ 2 & 3 & -2\end{array}\right)$
Following:
$x=A^{-1} b \Rightarrow\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{rrr}-5 & -9 & 6 \\ 1 & 2 & -1 \\ 2 & 3 & -2\end{array}\right)\left(\begin{array}{l}4 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{r}-5 \\ 2 \\ 2\end{array}\right)$
This example illustrates the relation between matrix inversion and the standard scalar division. Multiplying a scalar by its inverse results in a value of 1 . Much the same way, when a matrix is multiplied by its inverse, the result is the identity matrix. So, when the system $A x=b$ is pre-multiplied by the inverse A^{-1}, it turns A into the identity matrix, effectively eliminating it from the left-hand side, leaving only x remaining. In a way, the operation effectively "divides" both sides of the system by A.

There exist different ways to calculate the inverse of a matrix. One method that is commonly used is based on the concepts of determinant and adjoint of a matrix.
definition m.10: let A be some $n \times n$ invertible matrix. Then there exists a number called the determinant of A and denoted by $|A|$, and a $n \times n$ matrix called the adjoint of A and denoted by $\operatorname{adj}(A)$ such that:
$A^{-1}=\frac{1}{|A|} a d j(A)$

Computing the determinant and the adjoint of A typically requires complicated calculations and is beyond the scope of this manual. The general methodology is thus not developed here, but for the sake of illustration the formulas are provided for the simple case where A is 2×2.
property m.8: let A be a 2×2 invertible matrix, so that $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$.
Then $|A|=a_{11} a_{22}-a_{21} a_{12}$ and $\operatorname{adj}(A)=\left(\begin{array}{rr}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right)$.
It is not necessarily the case that an inverse exists for a given matrix. This is in fact related to the concept of determinant. A square matrix which has a determinant equal to zero cannot be inverted. On the other hand, any non-zero determinant implies the possibility of inversion.
definition m.11: let A be some $n \times n$ matrix. If $|A|=0$, then A is said to be singular and it cannot be inverted. If $|A| \neq 0$, then a well-defined inverse A^{-1} exists.

For instance:
example m.15:
Let: $\quad A=\left(\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right)$
Then $|A|=1 \times 5-3 \times 2=-1$. Because $|A| \neq 0$, the inverse of A exists.
Also, $\operatorname{adj}(A)=\left(\begin{array}{rr}5 & -2 \\ -3 & 1\end{array}\right)$.
Then: $\quad A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)=\frac{1}{-1}\left(\begin{array}{rr}5 & -2 \\ -3 & 1\end{array}\right)=\left(\begin{array}{rr}-5 & 2 \\ 3 & -1\end{array}\right)$
It can then be readily verified that:
$A A^{-1}=\left(\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right)\left(\begin{array}{rr}-5 & 2 \\ 3 & -1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$
and
$A^{-1} A=\left(\begin{array}{rr}-5 & 2 \\ 3 & -1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$
To conclude this section, a number of common results about matrix inverses and determinants are introduced.
property m.9: let A be some $n \times n$ invertible matrix; then the inverse A^{-1} is unique. (uniqueness of matrix inverse)
property m.10: let A be some $n \times n$ invertible matrix; then $\left(A^{-1}\right)^{-1}=A$. (inverse of matrix inverse)
property m.11: let a be some scalar and B be some $n \times n$ matrix; then $(a B)^{-1}=a^{-1} B^{-1}$. (inverse of scalar multiplication)
property m.12: let A and B be two $n \times n$ invertible matrices; then $(A B)^{-1}=B^{-1} A^{-1}$. (inverse of matrix product)
property m.13: let A and D be two invertible matrices, and let B and C be matrices with compliant dimensions; then:
$(A+B D C)^{-1}=A^{-1}-A^{-1} B\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}$. (Sherman-Woodbury-Morrison identity)
property m.14: let a be some scalar and B be some $n \times n$ matrix; then $|a B|=a^{n}|B|$. (determinant of scalar multiplication)
property m.15: let A and B be two $n \times n$ matrices; then $|A B|=|A||B|$. (determinant of matrix product)
property m.16: let A be some $n \times n$ invertible matrix; then $\left|A^{-1}\right|=|A|^{-1}$. (determinant of matrix inverse)

The next two results are less standard, but they can prove occasionally useful in Bayesian statistics.
property m.17: let A be some $m \times n$ matrix, and B be some $n \times m$ matrix, so that $A B$ and $B A$ are defined. Then $\left|I_{m}+A B\right|=\left|I_{n}+B A\right|$. (Sylvester's determinant identity)
property m.18: let A be some $m \times n$ matrix, and B be some $n \times m$ matrix, so that $A B$ and $B A$ are defined; also, let C be any $m \times m$ invertible matrix. Then $|C+A B|=|C|\left|I_{n}+B C^{-1} A\right|$. (generalisation of Sylvester's determinant identity).

m. 6 Matrix operations: transposition

Matrix transposition represents a very common operation in matrix algebra. It is formally defined as follows.
definition m.12: let A be some $m \times n$ matrix; then the transpose of A, denoted by A^{\prime} or A^{T}, is the $n \times m$ matrix such that row i of A becomes column i of A^{\prime}, for $i=1,2, \ldots, m$.

In other words, transposing a matrix means interchanging its rows with its columns, or equivalently, fliping the matrix over its main diagonal. For instance:
example m.16:
Let: $\quad A=\left(\begin{array}{rrr}3 & 8 & -9 \\ 1 & 0 & 4\end{array}\right) \quad b=\left(\begin{array}{r}1 \\ -2 \\ 0 \\ 7\end{array}\right)$
Then: $\quad A^{\prime}=\left(\begin{array}{rr}3 & 1 \\ 8 & 0 \\ -9 & 4\end{array}\right) \quad b^{\prime}=\left(\begin{array}{llll}1 & -2 & 0 & 7\end{array}\right)$
Matrix transposes have a number of convenient properties.
property m.19: let a be some scalar. Then $a^{\prime}=a$.
property m.20: let A be some matrix. Then $\left(A^{\prime}\right)^{\prime}=A$.
property m.21: let A and B be matrices such that $A+B$ is defined. Then $(A+B)^{\prime}=A^{\prime}+B^{\prime}$.
property m.22: let a be some scalar and B be some matrix. Then $(a B)^{\prime}=a B^{\prime}$.
property m.23: let A and B be matrices such that $A B$ is defined. Then $(A B)^{\prime}=B^{\prime} A^{\prime}$.
property m.24: let A be some some $n \times n$ invertible matrix. Then $\left(A^{-1}\right)^{\prime}=\left(A^{\prime}\right)^{-1}$.
property m.25: let A be some some $n \times n$ matrix. Then $\left|A^{\prime}\right|=|A|$.

m. 7 Some special matrices

This section introduces a number of special matrices that are commonly encountered in matrix algebra in general, and in statistics in particular. The presentation starts with a very basic concept:
definition m.13: a square matrix is a matrix which has as many rows as columns.

In other words, a square matrix is a matrix of dimension $n \times n$. Some occurrences of square matrices have already been introduced. The identity matrix for instance is a square matrix. Also, only square matrix can be inverted.

example m.17:

Let: $\quad A=\left(\begin{array}{rr}1 & 0 \\ -3 & 2\end{array}\right) \quad B=\left(\begin{array}{rrr}1 & 6 & -3 \\ -2 & 0 & 4\end{array}\right)$
Then A is square, while B is not.
Another important concept is that of diagonal:
definition m.14: let A be some matrix; the main diagonal of A is the collection of entries $a_{i j}$ of A with $i=j$.

The main diagonal of a matrix A is thus the collection of entries $a_{11}, a_{22}, \ldots, a_{n n}$, where n is the smallest dimension of A (number of rows or columns).
example m.18:
Let: $\quad A=\left(\begin{array}{lll}-2 & 3 & 1 \\ -3 & 1 & 0\end{array}\right) \quad B=\left(\begin{array}{rrr}1 & -7 & 6 \\ 0 & -5 & 2 \\ 0 & -1 & 2 \\ 8 & 1 & -3\end{array}\right)$
Then the main diagonal of A consists in entries $a_{11}=-2$ and $a_{22}=1$, while the main diagonal of B is made of entries $b_{11}=1, b_{22}=-5$ and $b_{33}=2$.

The concept of main diagonal naturally extends to that of a diagonal matrix.
definition m.15: a square matrix A is diagonal if the entries outside its main diagonal are all zeros.

For instance:
example m.19:
Let: $\quad A=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7\end{array}\right) \quad B=\left(\begin{array}{rrr}-3 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \quad C=\left(\begin{array}{rrr}6 & 0 & 0 \\ 0 & -2 & 0 \\ 1 & 0 & -3\end{array}\right)$.
A is a diagonal matrix. B is not diagonal since it is not square. C is not diagonal since one entry outside the main diagonal is non-zero $\left(c_{31}=1\right)$.

The simplicity of diagonal matrices makes them trivial to invert:
property m.26: let A be a $n \times n$ invertible diagonal matrix. Then the inverse of A is the diagonal matrix such that: $a_{i i}^{-1}=1 / a_{i i}$, for $i=1,2, \ldots, n$.

In other words, the inverse of a diagonal matrix obtain from the inverse of its main diagonal. For instance:
example m.20:
Let: $\quad A=\left(\begin{array}{rrr}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5\end{array}\right) \quad$ then $\quad A^{-1}=\left(\begin{array}{rrr}\frac{1}{3} & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{5}\end{array}\right)$
Another useful property of diagonal matrices is the simplicity of their determinants:
property m.27: Let A be a $n \times n$ diagonal matrix. Then the determinant of A is the product of the terms on its main diagonal, so that: $|A|=\prod_{i=1}^{n} a_{i i}$.

Another class of important matrices based on the main diagonal is the class of triangular matrices.
definition m.16: a square matrix A is lower triangular if the entries above its main diagonal are all zeros; a square matrix A is upper triangular if the entries below its main diagonal are all zeros.

For instance:

example m.21:

Let: $\quad A=\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 & -3 & 0 \\ 5 & 7 & -8\end{array}\right) \quad B=\left(\begin{array}{rrr}-1 & 4 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & -8\end{array}\right)$.
Then A is a lower triangular matrix and B is an upper triangular matrix.
Similarly to diagonal matrices, the determinant of triangular matrices is easy to calculate.
property m.28: let A be a $n \times n$ lower or upper triangular matrix. Then the determinant of A is the product of the terms on its main diagonal, so that: $|A|=\prod_{i=1}^{n} a_{i i}$.

Another class of special matrices is that of symmetric matrices:
definition m.17: a square matrix A is a symmetric matrix if $A=A^{\prime}$.

Hence, as the name indicates, a symmetric matrix is a matrix which is symmetric around its main diagonal. For instance:
example m.22:
Let: $\quad A=\left(\begin{array}{rrr}-2 & -1 & 4 \\ -1 & 3 & 5 \\ 4 & 5 & 0\end{array}\right)$.
Then A is a symmetric matrix.

A concept closely related to that of symmetric matrix is that of positive definiteness:
definition m.18: let A be some square, $n \times n$ matrix; then A is positive definite if for any vector x of dimension n, one has $x^{\prime} A x>0$.

For instance:
example m.23:
Let: $\quad A=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right) \quad x=\binom{x_{1}}{x_{2}}$
Then: $\quad x^{\prime} A x=\left(\begin{array}{ll}x_{1} & x_{2}\end{array}\right)\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)\binom{x_{1}}{x_{2}}=2 x_{1}^{2}-2 x_{2} x_{1}+2 x_{2}^{2}=x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+x_{2}^{2}$
All the terms in the sum are positive, so the sum is positive and $x^{\prime} A x>0$ for any vector x. Hence A is positive definite.

Matrices that are both symmetric and positive definite have interesting properties. For this reason, they are used extensively in statistics. One such property is the decomposition of any symmetric and positive definite matrix into lower triangular matrices:
definition m.19: let A be a symmetric and positive definite matrix; the Cholesky factor of A is the lower triangular matrix G such that $G G^{\prime}=A$.

For instance:

example m.24:

Let: $\quad A=\left(\begin{array}{rr}9 & -6 \\ -6 & 5\end{array}\right)$
Then $G=\left(\begin{array}{rr}-3 & 0 \\ 2 & 1\end{array}\right)$ is the Cholesky factor of A. Indeed, it is immediate to check that:
$G G^{\prime}=\left(\begin{array}{rr}-3 & 0 \\ 2 & 1\end{array}\right)\left(\begin{array}{rr}-3 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{rr}9 & -6 \\ -6 & 5\end{array}\right)=A$
Cholesky factors exist for any symmetric positive definite matrix. This is stated in the next property:
property m.29: let A be a symmetric and positive definite matrix; then there exists a Cholesky factor of A, and this Cholesky factor is unique.

An alternative decomposition for a symmetric and positive definite matrix is the triangular factorisation:
definition $\mathbf{m . 2 0}$: let A be a symmetric and positive definite matrix; the triangular factorisation of A consists in the pair of matrices F and L such that $F L F^{\prime}=A$, with F a lower triangular matrix with ones on the main diagonal, and L a diagonal matrix.

For instance:
example m. 25 :
Let: $\quad A=\left(\begin{array}{rr}2 & -4 \\ -4 & 11\end{array}\right)$
Then the pair of matrices $F=\left(\begin{array}{rr}1 & 0 \\ -2 & 1\end{array}\right)$ and $L=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$ represent the triangular factorisation of A.
Indeed, it is immediate to check that:
$F L F^{\prime}=\left(\begin{array}{rr}1 & 0 \\ -2 & 1\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)\left(\begin{array}{rr}1 & -2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{rr}2 & -4 \\ -4 & 11\end{array}\right)=A$

Similarly to Cholesky factorisation, triangular factorisation exists for any symmetric positive definite matrix:
property m.30: let A be a symmetric and positive definite matrix; then there exists a triangular factorisation of A, and this triangular factorisation is unique.

Often, one works with the inverse of triangular factorisation matrices. In this respect, the following result proves very useful:
property m.31: let A be some $n \times n$ invertible lower triangular matrix with ones on the main diagonal; then its inverse A^{-1} is also lower triangular with ones on the main diagonal, and is given by:
$A^{-1}=I_{n}-B+B^{2}+\ldots+(-1)^{(n-1)} B^{(n-1)}$,
where B is a lower triangular matrix with zeros on the main diagonal and $b_{i j}=a_{i j}$ below the diagonal.
proof: A can be written as $A=I_{n}+B$. Also, the definition of B implies that B^{n} is the $n \times n$ zero matrix.
Following:
$\left.\left.A\left(I_{n}-B+B^{2}+\ldots+(-1)^{n-1} B^{n-1}\right)\right)=\left(I_{n}+B\right)\left(I_{n}-B+B^{2}+\ldots+(-1)^{n-1} B^{n-1}\right)\right)$
$\left.\left.\left(I_{n}-B+B^{2}+\ldots+(-1)^{n-1} B^{n-1}\right)\right)+\left(B-B^{2}+B^{3}+\ldots+(-1)^{n-2} B^{n-1}+(-1)^{n-1} B^{n}\right)\right)$
$=I_{n}$.
Hence, from the definition of a matrix inverse, $\left.I_{n}-B+B^{2}+\ldots+(-1)^{(n-1)} B^{(n-1)}\right)=A^{-1}$.
To prove the first part of the assertion, note that the term $-B+B^{2}+\ldots+(-1)^{n-1} B^{n-1}$ is a summation of terms which are of powers of B. Because of the definition of B, the summation is a lower triangular matrix with zeros on the main diagonal. Following, the full term $I_{n}-B+B^{2}+\ldots+(-1)^{n-1} B^{n-1}$ is lower triangular with ones on the main diagonal.

The following example illustrates this property:
example m.26:
Let: $\quad A=\left(\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 2 & 3 & 1\end{array}\right) \quad$ then $\quad B=\left(\begin{array}{rrr}0 & 0 & 0 \\ -2 & 0 & 0 \\ 2 & 3 & 0\end{array}\right) \quad B^{2}=\left(\begin{array}{rrr}0 & 0 & 0 \\ 0 & 0 & 0 \\ -6 & 0 & 0\end{array}\right)$
Following:
$A^{-1}=I_{3}-B+B^{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)-\left(\begin{array}{rrr}0 & 0 & 0 \\ -2 & 0 & 0 \\ 2 & 3 & 0\end{array}\right)+\left(\begin{array}{rrr}0 & 0 & 0 \\ 0 & 0 & 0 \\ -6 & 0 & 0\end{array}\right)=\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & 0 \\ -8 & -3 & 1\end{array}\right)$
One can check that:
$A A^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 2 & 3 & 1\end{array}\right)\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & 0 \\ -8 & -3 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
To conclude, the details of the calculations involved in the estimation of the Cholesky and triangular factorisations are developed. This part can be skipped if one is not interested in computational details.
property m.32: let A be some $n \times n$ symmetric positive definite matrix; then its Cholesky factor G can be estimated from:
$g_{j j}=\sqrt{a_{j j}-\sum_{k=1}^{j-1} g_{j k}^{2}}($ diagonal term of column $j)$
$g_{i j}=\frac{1}{g_{j j}}\left(a_{i j}-\sum_{k=1}^{j-1} g_{i k} g_{j k}\right)($ for $i>j$, terms below the diagonal of column j)
proof: the Cholesky decomposition of A implies that $G G^{\prime}=A$. Developing the involved matrices yields:

$$
\left(\begin{array}{rrlr}
g_{11} & 0 & \ldots & 0 \\
g_{21} & g_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
g_{n 1} & g_{n 2} & \ldots & g_{n n}
\end{array}\right)\left(\begin{array}{rrrr}
g_{11} & g_{21} & \ldots & g_{n 1} \\
0 & g_{22} & \ldots & g_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & g_{n n}
\end{array}\right)=\left(\begin{array}{rrrr}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

Then, computing the product on the left-hand side and ignoring the upper triangular part of A because of symmetry:

$$
\left(\begin{array}{cccc}
g_{11}^{2} & & & \\
g_{21} g_{11} & g_{21}^{2}+g_{22}^{2} & & \\
\vdots & \vdots & \ddots & \\
g_{n 1} g_{11} & g_{n 1} g_{21}+g_{n 2} g_{22} & \ldots & \sum_{k=1}^{n} g_{n k}^{2}
\end{array}\right)=\left(\begin{array}{rrr}
a_{11} & & \\
a_{21} & a_{22} & \\
\vdots & \vdots & \ddots \\
a_{n 1} & a_{n 2} & \ldots \\
& & a_{n n}
\end{array}\right)
$$

Column 1 yields:

$$
\begin{array}{lll}
g_{11}^{2}=a_{11} & \Rightarrow & g_{11}=\sqrt{a_{11}} \\
g_{21} g_{11}=a_{21} & \Rightarrow & g_{21}=\frac{a_{21}}{g_{11}} \\
& \vdots & \\
g_{n 1} g_{11}=a_{n 1} & \Rightarrow & g_{n 1}=\frac{a_{n 1}}{g_{11}}
\end{array}
$$

Column 2 yields:

$$
\begin{array}{ccl}
g_{21}^{2}+g_{22}^{2}=a_{22} & \Rightarrow & g_{22}=\sqrt{a_{22}-g_{21}^{2}} \\
g_{31} g_{21}+g_{32} g_{22}=a_{32} & \Rightarrow & g_{32}=\frac{1}{g_{22}}\left(a_{32}-g_{31} g_{21}\right) \\
\vdots & & \\
g_{n 1} g_{21}+g_{n 2} g_{22}=a_{n 2} & \Rightarrow & g_{n 2}=\frac{1}{g_{22}}\left(a_{n 2}-g_{n 1} g_{21}\right)
\end{array}
$$

Going on this way, one obtains that in general:
$g_{j j}=\sqrt{a_{j j}-\sum_{k=1}^{j-1} g_{j k}^{2}} \quad g_{i j}=\frac{1}{g_{j j}}\left(a_{i j}-\sum_{k=1}^{j-1} g_{i k} g_{j k}\right)$
The same kind of result can be obtained for triangular factorisation:
property m.33: let A be some $n \times n$ symmetric positive definite matrix; then its triangular factorisation matrices F and L can be estimated from:
$l_{j j}=a_{j j}-\sum_{k=1}^{j-1} f_{j k}^{2} l_{k k}($ terms of the L matrix $)$
$f_{i j}=\frac{1}{l_{j j}}\left(a_{i j}-\sum_{k=1}^{j-1} f_{i k} f_{j k} l_{k k}\right)$ (terms of the F matrix)

What is the best alternative between Cholesky and triangular factorization? On the one hand, triangular factorization is more robust numerically because it does not involve square root calculations. On the other hand, Cholesky factorization involves fewer operations and is usually faster. Which one is best thus often depends on the context. Also, the two methods are related, so that using one makes it easy to recover the other. This is stated in the next property:
property m.34: let A be some $n \times n$ symmetric positive definite matrix, so that there exists a Cholesky factor G such that $G G^{\prime}=A$, and a pair of triangular factorisation matrices F and L such that $F L F^{\prime}=A$. Then G, F and L are linked by the following relations:
$g_{j j}=\sqrt{l_{j j}}$ (diagonal term of column j)
$g_{i j}=f_{i j} \sqrt{l_{j j}}$, (for $i>j$, terms below the diagonal of column j)
proof: as $G G^{\prime}=A$ and $F L F^{\prime}=A$, then $G G^{\prime}=F L F^{\prime}$. Also, because L is a diagonal matrix, it is possible to define its square root as the diagonal matrix $L^{1 / 2}$ whose main diagonal entries are $\sqrt{l_{11}}, \sqrt{l_{22}}, \ldots$, so that $L^{1 / 2} L^{1 / 2}=L$. Following, $G G^{\prime}=F L^{1 / 2} L^{1 / 2} F^{\prime}=F L^{1 / 2}\left(L^{1 / 2}\right)^{\prime} F^{\prime}=\left(F L^{1 / 2}\right)\left(F L^{1 / 2}\right)^{\prime}$, and thus $G=F L^{1 / 2}$.

Developing the involved matrices yields:

$$
\left(\begin{array}{rrlr}
g_{11} & 0 & \ldots & 0 \\
g_{21} & g_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
g_{n 1} & g_{n 2} & \ldots & g_{n n}
\end{array}\right)=\left(\begin{array}{rrrr}
1 & 0 & \ldots & 0 \\
f_{21} & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
f_{n 1} & f_{n 2} & \ldots & 1
\end{array}\right)\left(\begin{array}{rrrr}
\sqrt{l_{11}} & 0 & \ldots & 0 \\
0 & \sqrt{l_{22}} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \sqrt{l_{n n}}
\end{array}\right)
$$

Then, computing the product on the right-hand side:

$$
\left(\begin{array}{rrrr}
g_{11} & 0 & \ldots & 0 \\
g_{21} & g_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
g_{n 1} & g_{n 2} & \ldots & g_{n n}
\end{array}\right)=\left(\begin{array}{rrrr}
\sqrt{l_{11}} & 0 & \ldots & 0 \\
f_{21} \sqrt{l_{11}} & \sqrt{l_{22}} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
f_{n 1} \sqrt{l_{11}} & f_{n 2} \sqrt{l_{22}} & \cdots & \sqrt{l_{n n}}
\end{array}\right)
$$

The correspondence between pairwise entries establishes the result.

A final remark to conclude this section: the Cholesky factorization can also be used as an efficient way to invert positive definite matrices. This is stated in the next property:
property m.35: let A be some $n \times n$ invertible, symmetric and positive definite matrix. Then the inverse of A can be obtained from:
$A^{-1}=\left(G^{-1}\right)^{\prime} G^{-1}$
where G is the Cholesky factor of A .
Indeed, because $A=G G^{\prime}$, then $A^{-1}=\left(G G^{\prime}\right)^{-1}=\left(G^{\prime}\right)^{-1} G^{-1}=\left(G^{-1}\right)^{\prime} G^{-1}$. The benefit of this procedure over regular inversion is that inverting the lower triangular Cholesky factor G is considerably cheaper than inverting A directly, thanks to what is known as back substitution. The total calculation time is thus significantly reduced with this method.

m. 8 Kronecker products

An alternative to the standard matrix product is the so-called Kronecker product, defined as follows:
definition m.21: let A be a $m \times n$ matrix, and B be a $p \times q$ matrix; the Kronecker product of A and B, denoted by $A \otimes B$, is the $m p \times n q$ matrix given by:
$A \otimes B=\left(\begin{array}{cccc}a_{11} B & a_{12} B & \ldots & a_{1 n} B \\ a_{21} B & a_{22} B & \ldots & a_{2 n} B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} B & a_{m 2} B & \ldots & a_{m n} B\end{array}\right)$

For instance:
example m.27:
Let: $\quad A=\left(\begin{array}{rr}2 & -3 \\ 0 & 1\end{array}\right) \quad B=\left(\begin{array}{rrr}1 & 5 & -2 \\ -1 & 0 & 7 \\ -4 & 8 & 0\end{array}\right)$
Then:
$A \otimes B=\left(\begin{array}{ll}a_{11} B & a_{12} B \\ a_{21} B & a_{22} B\end{array}\right)$
$=\left(\begin{array}{rc}(2)\left(\begin{array}{rrr}1 & 5 & -2 \\ -1 & 0 & 7 \\ -4 & 8 & 0\end{array}\right) & (-3)\left(\begin{array}{rrr}1 & 5 & -2 \\ -1 & 0 & 7 \\ -4 & 8 & 0\end{array}\right) \\ (0)\left(\begin{array}{rrr}1 & 5 & -2 \\ -1 & 0 & 7 \\ -4 & 8 & 0\end{array}\right) & (1)\left(\begin{array}{rrrrrr}1 & 5 & -2 \\ -1 & 0 & 7 \\ -4 & 8 & 0\end{array}\right)\end{array}\right)=\left(\begin{array}{rrrrr}2 & 10 & -4 & -3 & -15 \\ -2 & 0 & 14 & 3 & 0 \\ -21 \\ -8 & 16 & 0 & 12 & -24 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -4 & 8\end{array}\right)$
Unlike the regular matrix product which may not be defined, the kronecker product is always defined for any pair of matrices A and B. Nevertheless, similarly to standard matrix products, Kronecker products are not commutative: in general $A \otimes B \neq B \otimes A$.

Kronecker products have the following properties:
property m.36: let a be some scalar and B be some matrix; then $a B=a \otimes B=B \otimes a=B a$.
property m.37: let A and B be two matrices; then $(A \otimes B)^{\prime}=A^{\prime} \otimes B^{\prime}$.
property m.38: let A and B be two invertible matrices; then $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$.
property m.39: let A, B and C be matrices such that $A+B$ is defined; then $A \otimes C+B \otimes C=(A+B) \otimes C$.
property m.40: let A, B and C be matrices such that $B+C$ is defined; then $A \otimes B+A \otimes C=A \otimes(B+C)$.
property m.41: let a be some scalar, and B and C be two matrices; then:
$a(B \otimes C)=(a B) \otimes C=B \otimes(a C)=(B \otimes C) a$.
property m.42: let A, B, C and D matrices such that $A C$ and $B D$ are defined; then:
$(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$.
property m.43: let A be some $n \times n$ matrix, and B be some $k \times k$ matrix; then $|A \otimes B|=|A|^{k}|B|^{n}$.

m. 9 Matrix rank

The rank of a matrix is related to the notion of linear independence:
definition m.22: let A be some matrix; the rank of A, denoted by $\operatorname{rank}(A)$, is the maximum number of linearly independent rows (or columns) in A.

For instance:
example m.28:
Let: $\quad A=\left(\begin{array}{rrr}1 & 3 & 5 \\ 2 & -1 & 3 \\ 4 & -3 & 4\end{array}\right) \quad$ and $\quad B=\left(\begin{array}{rrr}1 & 3 & 5 \\ 2 & -1 & 3 \\ 4 & -3 & 5\end{array}\right)$
Then $\operatorname{rank}(A)=3$ since all the columns (and rows) of A are linearly independent.
On the other hand, $\operatorname{rank}(B)=2$ since there are only two linearly independent columns in B. Indeed, the third column of B is a linear combination of the first two columns:
$\left(\begin{array}{l}5 \\ 3 \\ 5\end{array}\right)=2\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)+1\left(\begin{array}{r}3 \\ -1 \\ -3\end{array}\right)$
The rank of a matrix has the following properties:
property m.44: let A be some matrix; then the number of linearly independent rows of A is equal to the number of linearly independent columns of A. In other words, the row rank of A is equal to the column rank of A.
property m.45: let A be some $n \times m$ matrix; then $\operatorname{rank}(A) \leq \min (n, m)$. In other words, the rank of a matrix is at most equal to the minimum between the number of row and the number of columns.

The notion of full rank is defined as follows.
definition m.23: let A be some matrix; if all the rows (or columns) of A are linearly independent, then A is said to have full rank .

For instance:
example m.29:
Let A and B be defined as in example m.28. Then A has full rank, while B hasn't.
The notion of rank is closely related to the notion of invertibility, as stated in the next property:
property m.46: let A be some square, $n \times n$ matrix; then A is invertible if and only if A has full rank.

m. 10 Matrix trace

In linear algebra, the trace of a square matrix is defined as:
definition m.24: let A be a $n \times n$ square matrix; the trace of A, denoted by $\operatorname{tr}(A)$, is the sum of its main diagonal entries, so that:
$\operatorname{tr}(A)=a_{11}+a_{22}+\ldots+a_{n n}=\sum_{i=1}^{n} a_{i i}$

For instance:
example m.30:
Let: $\quad A=\left(\begin{array}{rrr}0 & 2 & -6 \\ 9 & 2 & 1 \\ 7 & 5 & -3\end{array}\right)$
Then:
$\operatorname{tr}(A)=a_{11}+a_{22}+a_{33}=0+2-3=-1$
Traces have the following properties:
property m.47: let a be some scalar; then $a=\operatorname{tr}(a)$.
property m.48: let a be some scalar and B be some matrix; then $\operatorname{tr}(a B)=a \operatorname{tr}(B)$.
property m.49: let A and B be two $n \times n$ square matrices; then $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$.
property m.50: let A, B, and C be matrices such that the products $A B C, C A B$ and $B C A$ all result in square matrices; then $\operatorname{tr}(A B C)=\operatorname{tr}(C A B)=\operatorname{tr}(B C A)$ (cyclical property).

m. 11 Matrix vectorization

In linear algebra, vectorization is used to convert matrices into vectors:
definition m.25: let A be a $m \times n$ matrix; the vectorization of A, denoted by $\operatorname{vec}(A)$, is the $m n \times 1$ column vector obtained by rearranging the columns of A on top of each other:

$$
\operatorname{vec}(A)=\left(\begin{array}{c}
a_{11} \\
\vdots \\
a_{m 1} \\
\vdots \\
a_{1 n} \\
\vdots \\
a_{m n}
\end{array}\right)
$$

For instance:
example m.31:
Let: $\quad A=\left(\begin{array}{rrr}1 & 3 & 5 \\ 0 & -4 & 9\end{array}\right) \quad$ then $\quad \operatorname{vec}(A)=\left(\begin{array}{r}1 \\ 0 \\ 3 \\ -4 \\ 5 \\ 9\end{array}\right)$
Matrix vectorization has the following properties:
property m.51: let A and B be matrices such that $A+B$ is defined; then $\operatorname{vec}(A+B)=\operatorname{vec}(A)+\operatorname{vec}(B)$.
property m.52: let A and B be matrices such that $A^{\prime} B$ is a square matrix; then:
$\operatorname{vec}(A)^{\prime} \operatorname{vec}(B)=\operatorname{vec}(B)^{\prime} \operatorname{vec}(A)=\operatorname{tr}\left(A^{\prime} B\right)=\operatorname{tr}\left(A B^{\prime}\right)=\operatorname{tr}\left(B^{\prime} A\right)=\operatorname{tr}\left(B A^{\prime}\right)$.
property m.53: let a be some column vector; then: $a=v e c\left(a^{\prime}\right)$.
property m.54: let A, B and C be matrices such that $A B C$ is defined; then $\operatorname{vec}(A B C)=\left(C^{\prime} \otimes A\right) v e c(B)$.
property m.55: let A, B, C, D, E and F be matrices such that A is $n \times n$ and symmetric, D is $m \times m$, and B, C, E and F are $m \times n$; then:
$\operatorname{tr}\left(A^{-1}(B-C)^{\prime} D^{-1}(E-F)\right)=(\operatorname{vec}(B)-\operatorname{vec}(C))^{\prime}(A \otimes D)^{-1}(\operatorname{vec}(E)-\operatorname{vec}(F))$.
proof:
$\operatorname{tr}\left(A^{-1}(B-C)^{\prime} D^{-1}(E-F)\right)$
$=\operatorname{tr}\left((B-C)^{\prime} D^{-1}(E-F) A^{-1}\right) \quad(\mathrm{m} .50)$
$=\operatorname{vec}(B-C)^{\prime} \times \operatorname{vec}\left(D^{-1}(E-F) A^{-1}\right) \quad(\mathrm{m} .52)$
$=\operatorname{vec}(B-C)^{\prime} \times\left(\left(A^{-1} \otimes D^{-1}\right) \operatorname{vec}(E-F)\right) \quad(\mathrm{m} .54)$
$=(\operatorname{vec}(B)-\operatorname{vec}(C))^{\prime}\left(A^{-1} \otimes D^{-1}\right)(\operatorname{vec}(E)-\operatorname{vec}(F)) \quad(\mathrm{m} .51)$
$=(\operatorname{vec}(B)-\operatorname{vec}(C))^{\prime}(A \otimes D)^{-1}(\operatorname{vec}(E)-\operatorname{vec}(F)) \quad(\mathrm{m} .38)$

m. 12 Eigenvalues and eigenvectors

Eigenvalues and eigenvectors provide a general way to decompose square matrices. They prove occasionally useful for their relations with matrix determinants and stability analysis.
definition m.26: let A be a $n \times n$ square matrix; let v be a $n \times 1$ vector and λ be a scalar such that $A v=\lambda v ;$ then v is an eigenvector of A, and λ is an eigenvalue of A associated to this eigenvector.

For instance:
example m. 32 :
Let $A=\left(\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right)$
Then $v_{1}=\binom{1}{1}$ is an eigenvector of A, and $\lambda_{1}=1$ is the associated eigenvalue.
Indeed, it is straightforward to check that:
$A v_{1}=\left(\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right)\binom{1}{1}=\binom{1}{1}$ and $\lambda_{1} v_{1}=(1)\binom{1}{1}=\binom{1}{1}$

Then, $v_{2}=\binom{3}{2}$ is the second eigenvector of A, and its associated eigenvalue is $\lambda_{2}=2$. It is possible to check that:
$A v_{2}=\left(\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right)\binom{3}{2}=\binom{6}{4}$ and $\lambda_{2} v_{2}=(2)\binom{3}{2}=\binom{6}{4}$

How eigenvalues and eigenvectors are computed is beyond the scope of this manual. It is however useful to outline a few properties:
property m.56: let A be a $n \times n$ matrix, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ denote the n eigenvalues of A; then the trace of A is equal to the sum of its n eigenvalues, namely:
$\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}$.
property m. $\mathbf{5 7}$: let A be a $n \times n$ matrix, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ denote the n eigenvalues of A; then the determinant of A is equal to the product of its n eigenvalues, namely:
$|A|=\prod_{i=1}^{n} \lambda_{i}$.
property m.58: let A be a $n \times n$ matrix and let t be some scalar; if λ is an eigenvalue of A, then $\lambda+t$ is an eigenvalue of $A+t I_{n}$.
proof: because λ is an eigenvalue of A, there exists some eigenvector v such that $A v=\lambda v$. Then:
$A v=\lambda v \Rightarrow A v+t v=\lambda v+t v \Rightarrow A v+t I_{n} v=\lambda v+t v \Rightarrow\left(A+t I_{n}\right) v=(\lambda+t) v$
Therefore, by definition, $\lambda+t$ is an eigenvalue of $A+t I_{n}$.
property m.59: let A be a $n \times n$ matrix; then the determinant of $I_{n}+A$ is equal to the product of the eigenvalues of A plus 1:
$\left|I_{n}+A\right|=\prod_{i=1}^{n}\left(1+\lambda_{i}(A)\right)$, where $\lambda_{i}(A)$ denotes the $i^{\text {th }}$ eigenvalue of A.
proof:
$\left|I_{n}+A\right|$
$=\prod_{i=1}^{n} \lambda_{i}\left(I_{n}+A\right) \quad(\mathrm{m} .56)$, where $\lambda_{i}\left(I_{n}+A\right)$ denotes the $i^{\text {th }}$ eigenvalue of $I_{n}+A$
$=\prod_{i=1}^{n}\left(1+\lambda_{i}(A)\right) \quad(\mathrm{m} .57)$ in the case $t=1$
One of the main use of eigenvalues and eigenvectors is what is known as the diagonalization of matrices. Consider some matrix A of dimension $n \times n$. Then, using eigenvalues and eigenvectors, one can write: $A v_{1}=\lambda_{1} v_{1}, A v_{1}=\lambda_{2} v_{2}, \cdots, \lambda_{n} v_{n}$. These n solutions can be written as a single compact system of matrices as:
$A V=V \Lambda$
with:
$V=\left(\begin{array}{cccc}\vdots & \vdots & & \vdots \\ v_{1} & v_{2} & \ldots & v_{n} \\ \vdots & \vdots & & \vdots\end{array}\right)$ and $\Lambda=\left(\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right)$.
Post-multiplying both sides by V^{-1} yields:
$A=V \Lambda V^{-1}$
This operation diagonalizes the matrix A by the way of matrix Λ. Its main application in statistics is related to stability analysis, through the following two results:
property m.60: let A be a $n \times n$ square matrix, and let V and Λ be the associated matrices of eigenvectors and eigenvalues; then:
$A^{k}=V \Lambda^{k} V^{-1}$
with $\Lambda^{k}=\left(\begin{array}{cccc}\lambda_{1}^{k} & 0 & \ldots & 0 \\ 0 & \lambda_{2}^{k} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_{n}^{k}\end{array}\right)$
proof: $A^{k}=\left(V \Lambda^{k} V^{-1}\right)^{k}=\underbrace{V \Lambda V^{-1} \times V \Lambda V^{-1} \times \ldots \times V \Lambda V^{-1}}_{k \text { times }}=V \underbrace{\Lambda \times \Lambda \times \ldots \times \Lambda}_{k \text { times }} V^{-1}=V \Lambda^{k} V^{-1}$
property m.61: let A be a $n \times n$ square matrix, and let V and Λ be respectively the associated matrices of eigenvectors and eigenvalues; if the n eigenvalues of A are all smaller than one in absolute value, namely $\left|\lambda_{1}\right|<1,\left|\lambda_{2}\right|<1, \ldots,\left|\lambda_{n}\right|<1$, then:
$\lim _{k \rightarrow \infty} A^{k}=0$
proof: from property m. $59, A^{k}=V \Lambda^{k} V^{-1}$. For $i=1,2, \ldots, n$, if $\left|\lambda_{i}\right|<1$, then $\lim _{k \rightarrow \infty} \lambda_{i}^{k}=0$. Following:
$\lim _{k \rightarrow \infty} \Lambda^{k}=\lim _{k \rightarrow \infty}\left(\begin{array}{cccc}\lambda_{1}^{k} & 0 & \ldots & 0 \\ 0 & \lambda_{2}^{k} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_{n}^{k}\end{array}\right)=\left(\begin{array}{cccc}\lim _{k \rightarrow \infty} \lambda_{1}^{k} & 0 & \ldots & 0 \\ 0 & \lim _{k \rightarrow \infty} \lambda_{2}^{k} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lim _{k \rightarrow \infty} \lambda_{n}^{k}\end{array}\right)=\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right)$
Hence $\lim _{k \rightarrow \infty} A^{k}=V \lim _{k \rightarrow \infty} \Lambda^{k} V^{-1}=V 0 V^{-1}=0$

m. 13 Matrix definiteness

To discuss definiteness, one first needs the notion of quadratic form.
definition m.27: let A be a $n \times n$ square matrix and b an n-dimensional vector; the quadratic form of A is the scalar x such that:
$x=b^{\prime} A b$

For instance:

example m.33:

Let $A=\left(\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right)$ and $b=\binom{-2}{1}$
Then the quadratic form of A and b is given by:
$x=b^{\prime} A b=\left(\begin{array}{ll}-2 & 1\end{array}\right)\left(\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right)\binom{-2}{1}=17$

It is then possible to define positive definiteness:
definition m.28: let A be a $n \times n$ symmetric matrix; A is positive definite if for any non-zero n dimensional vector b the quadratic form $x=b^{\prime} A b$ is strictly positive (that is, $x=b^{\prime} A b>0$). A is positive semi-definite if instead $b^{\prime} A b \geq 0$ for any non-zero n-dimensional vector b.

For instance:
example m.34:
Let $A=\left(\begin{array}{rr}4 & -2 \\ -2 & 3\end{array}\right)$
Then for any vector $b=\binom{b_{1}}{b_{2}}$, the quadratic form of A and b is given by:
$x=b^{\prime} A b=\left(\begin{array}{ll}b_{1} & b_{2}\end{array}\right)\left(\begin{array}{rr}4 & -2 \\ -2 & 3\end{array}\right)\binom{b_{1}}{b_{2}}=2 b_{1}^{2}+2\left(b_{1}-b_{2}\right)^{2}+b_{2}^{2}$
The quadratic form involves only positive combinations of square terms, and is thus strictly positive for any non-zero vector b. Therefore, A is positive definite.

The notion of positive definiteness is important in statistics because variance-covariance matrices are always positive definite. As a consequence, certain statistical distributions used to generate variancecovariance matrices like the inverse Wishart distribution involve positive definite matrices both for their parameters and generated values.

At the opposite of positive definiteness is the notion of negative definiteness.
definition m.29: let A be a $n \times n$ symmetric matrix; A is negative definite if for any non-zero n dimensional vector b the quadratic form $x=b^{\prime} A b$ is strictly negative (that is, $x=b^{\prime} A b<0$). A is negative semi-definite if instead $b^{\prime} A b \leq 0$ for any non-zero n-dimensional vector b.

A matrix which is neither positive definite nor negative definite is said to be indefinite.
There exists a close relation between definiteness and the eigenvalues of a matrix, as stated by the next result.
property m.62: let A be a $n \times n$ symmetric matrix; A is positive definite (respectively positive semidefinite) if all its eigenvalues are positive (respectively non-negative).
property m.63: let A be a $n \times n$ symmetric matrix; A is negative definite (respectively negative semidefinite) if all its eigenvalues are negative (respectively non-positve).

m. 14 Partitioned matrices

Partitioned matrices provide a convenient representation. They are defined as follows.
definition m.30: a partitioned matrix is a matrix that has been partitioned into a set of submatrices by indicating subgroups (or "blocks") of rows and or columns.

For instance:
example m.35:
Let $A=\left(\begin{array}{ccc|c}2 & -4 & 0 & 3 \\ 1 & 2 & -5 & 7 \\ \hline-1 & 0 & 1 & 6\end{array}\right)=\left(\begin{array}{c|c}A_{11} & A_{12} \\ \hline A_{21} & A_{22}\end{array}\right)$
with:
$A_{11}=\left(\begin{array}{ccc}2 & -4 & 0 \\ 1 & 2 & -5\end{array}\right) \quad A_{12}=\binom{3}{7} \quad A_{21}=\left(\begin{array}{ccc}-1 & 0 & 1\end{array}\right) \quad A_{22}=(6)$
It is worth noting that the partitioning is only an interpretation, or a visualization of the original matrix. The representation may prove however quite convenient because the usual rules of matrix addition and multiplication directly apply to partitioned matrices, provided the submatrices are of appropriate dimensions. This is stated in the next properties.
property m.64: let A and B be some matrices partitioned as:
$A=\left(\begin{array}{l|l}A_{11} & A_{12} \\ \hline A_{21} & A_{22}\end{array}\right) \quad B=\left(\begin{array}{l|l}B_{11} & B_{12} \\ \hline B_{21} & B_{22}\end{array}\right)$
Then, provided the dimensions of the submatrices agree, the addition is defined as:
$A+B=\left(\begin{array}{l|l}A_{11}+B_{11} & A_{12}+B_{12} \\ \hline A_{21}+B_{21} & A_{22}+B_{22}\end{array}\right)$
property m.65: let A and B be some matrices partitioned as:
$A=\left(\begin{array}{l|l}A_{11} & A_{12} \\ \hline A_{21} & A_{22}\end{array}\right) \quad B=\left(\begin{array}{l|l}B_{11} & B_{12} \\ \hline B_{21} & B_{22}\end{array}\right)$
Then, provided the dimensions of the submatrices agree, the mutiplication is defined as:
$A \times B=\left(\begin{array}{l|l}A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\ \hline A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}\end{array}\right)$
The logic is similar if the matrix is partitioned into more blocks. In general, matrix partitionning can significantly improve the visualisation of large block matrices, as well as their interractions with other large matrices.

CHAPTER D

Statistical distributions

d.1. Discrete uniform

Table d.1: Summary of the Discrete uniform distribution

The uniform distribution represents one of the simplest discrete distributions. It is used in the case of experiments with k outcomes, all equally likely. This includes for instance the outcome of a fair die roll, or the number obtained from a roulette game. The distribution is straightforward: the mean is found halfway of the support, and the variance increases with the spread of the distribution, i.e. the number of outcomes. This is illustrated by Figure d.1.

Figure d.1: Variance of discrete uniform distributions

Generating pseudo random numbers from the discrete uniform distribution is easy, as long as one can create pseudo random numbers from the continuous uniform distribution. This is illustrated by the following algorithm.
algorithm d.1: random number generator for the discrete uniform distribution

1. draw a random number u from the continuous uniform distribution: $u \sim U(0,1)$.
2. set $x=\lfloor a+(b+1-a) u\rfloor$, where \lfloor.$\rfloor denotes the integer part of x$.

Then x is a random draw from $x \sim U(a, b)$.

d.2. Bernoulli

Type:	discrete			
Notation:	$x \sim \operatorname{Bern}(p)$			
Parameters:	p (success probability, $0 \leq p \leq 1)$			
Support:	$x \in\{0,1\}$			
pmf:	$f(x \mid p)=p^{x}(1-p)^{1-x}$			
Kernel:	$f(x \mid p) \propto p^{x}(1-p)^{1-x}$			
Normalizing constant:	$c=1$		Mean:	$p(1-p)$
:---	:---			
Variance:	$\begin{cases}0, & \text { if } p \leq 0.5 \\ 1, & \text { if } p>0.5\end{cases}$			
Median:	$\begin{cases}0, & \text { if } p \leq 0.5 \\ 1, & \text { if } p>0.5\end{cases}$			
Mode:	$f(x \mid p) \propto 1$	\quad	Discrete uniform: if $x_{1} \sim \operatorname{Bern}(0.5)$, then $x_{1} \sim U(0,1)$	
:---				
Diffuse distribution:				
Related distributions:				

Table d.2: Summary of the Bernoulli distribution

The Bernoulli distribution is used in situations where the considered random experiment can only produce two outcomes. Typical examples are the outcome of a coin flip (heads or tails), the gender of a baby (male or female), the success at an exam (pass or fail), and so on. The outcomes are labelled as "success", in which case the variable takes the value of 1 , or "failure", in which case the variable takes the value of 0 . The probability of success is given by p, implying that the probability of failure is $1-p$. The parameter also determines the variance of the distribution, the maximum variance being reached when $p=0.5$, and declining as p approaches 0 or 1. This is illustrated by Figure d.2:

Figure d.2: Variance of Bernoulli distributions

The following algorithm can be used to generate pseudo random numbers from the Bernoulli distribution.

algorithm d.2: random number generator for the Bernoulli distribution

1. draw a random number u from the continuous uniform distribution: $u \sim U(0,1)$.
2. if $u \leq p$, set $x=1$; otherwise, set $x=0$.

Then x is a random draw from $x \sim \operatorname{Bern}(p)$.

d.3. Categorical

Type:	discrete
Notation:	$x \sim \operatorname{Cat}\left(p_{1}, p_{2}, \ldots, p_{k}\right)$
Parameters:	$p_{1}, p_{2}, \ldots, p_{k}$ (outcome probabilities, $p_{i}>0 \forall i=1,2, \ldots, k$, and $\sum_{i=1}^{k} p_{i}=1$)
Support:	$x \in\{1,2, \ldots, k\}$
pmf:	$f\left(x \mid p_{1}, p_{2}, \ldots, p_{k}\right)=\prod_{i=1}^{k} p_{i}^{\mathbb{1}(x=i)} \quad \mathbb{1}($.$) denotes the indicator function$
Kernel:	$f\left(x \mid p_{1}, p_{2}, \ldots, p_{k}\right) \propto \prod_{i=1}^{k} p_{i}^{\mathbb{1}(x=i)}$
Normalizing constant:	$c=1$
Mean:	$\sum_{i=1}^{k} i p_{i}$
Variance:	$\sum_{i=1}^{k} i^{2} p_{i}-\left(\sum_{i=1}^{k} i p_{i}\right)^{2}$
Median:	i such that $\sum_{j=1}^{i-1} p_{j} \leq 0.5$ and $\sum_{j=1}^{i} p_{j} \geq 0.5$
Mode:	i such that $p_{i}=\max \left(p_{1}, p_{2}, \ldots, p_{k}\right)$
Diffuse distribution:	$f\left(x \mid p_{1}, p_{2}, \ldots, p_{k}\right) \propto 1$
Related distributions:	Uniform: if $x \sim \operatorname{Cat}\left(\frac{1}{k}, \ldots, \frac{1}{k}\right)$, then: $x \sim U(1, k)$ Bernoulli: if $x \sim \operatorname{Cat}\left(p_{1}, p_{2}\right)$, then $x \sim \operatorname{Bern}\left(p_{1}\right)$ Multinomial: if $x_{1}, x_{2}, \ldots, x_{n}$ are i.i.d $\sim \operatorname{Cat}\left(p_{1}, p_{2}, \ldots, p_{k}\right)$, then: $\sum_{i=1}^{n} x_{i} \sim \operatorname{Mun}\left(p_{1}, p_{2}, \ldots, p_{k}, n\right)$

Table d.3: Summary of the Categorical distribution

The categorical distribution represents a generalization of the Bernoulli distribution. While Bernoulli outcomes are restricted to be binary, the categorical distribution expands the number of possible outcomes to k. Typical applications are the outcome of rolling a 6 -face die, or the mark obtained at an exam $(A, B, C, D, E$ or $F)$. The different outcomes are labelled as $1,2, \ldots, k$, the numbers representing the different categories.

Pseudo random numbers from the categorical distribution can be easily generated from the following algorithm.

algorithm d.3: random number generator for the categorical distribution

1. draw a random number u from the continuous uniform distribution: $u \sim U(0,1)$.
2. if $u \leq p_{1}$, set $x=1$; if $p_{1}<u \leq p_{1}+p_{2}$, set $x=2$, and so on. In general: if $\sum_{j=1}^{i-1} p_{j} \leq u \leq \sum_{j=1}^{i} p_{j}$, set $x=i$, for $i=1, \ldots, k$.
Then x is a random draw from $x \sim \operatorname{Cat}\left(p_{1}, p_{2}, \ldots, p_{k}\right)$.

d.4. Binomial

Type:	discrete
Notation:	$x \sim \operatorname{Bin}(n, p)$
Parameters:	n (integer, number of trials) p (probability of success for each trial, $0 \leq p \leq 1$)
Support:	$x \in\{1, \ldots, n\}$
pmf:	$f(x \mid n, p)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad\binom{n}{x}=\frac{n!}{x!(n-x)!}$
Kernel:	$f(x \mid n, p) \propto \frac{1}{x!(n-x)!} p^{x}(1-p)^{n-x}$
Normalizing constant:	$c=n!$
Mean:	$n p$
Variance:	$n p(1-p)$
Median:	
Mode:	$\lfloor(n+1) p\rfloor$
Diffuse distribution:	$f(x \mid n, p) \propto 1$
Related distributions:	Bernoulli: if $x \sim \operatorname{Bin}(1, p)$, then $x \sim \operatorname{Bern}(p)$ Normal: if $x \sim \operatorname{Bin}(n, p)$ with $n p \geq 5$ and $n(1-p) \geq 5$, then approximately: $x \sim N(n p, n p(1-p))$ Poisson: if $x \sim \operatorname{Bin}(n, p)$ with $n \geq 100$ and $n p \leq 10$, then approximately: $x \sim \operatorname{Pois}(n p)$

Table d.4: Summary of the Binomial distribution

The Binomial distribution considers the number of succesful outcomes from n independent Bernoulli experiments. In this respect it is closely related to the Bernoulli distribution, and the success probability p of the Bernoulli distribution determines the mass function of the Binomial distribution, along with its moments. There are two characteristic features of the binomial distribution. First, the mean and the variance of the distribution are increasing with the number of trials n. Second, the skewness of the distribution is determined by the probability of success p : values lower than 0.5 generate positive skewness, while values greater than 0.5 imply negative skewness, the distribution being symmetric at $p=0.5$. This is illustrated by Figures d. 3 and d. 4 :

Figure d.3: Mean and variance of Binomial distributions ($p=0.4$)

Figure d.4: Skewness of Binomial distributions ($n=20$)

Finally, the Binomial distribution is related to both the normal and Poisson distributions when the number of trials n becomes large enough. When the probability of success p is sufficiently close to 0.5 , the Bi nomial distribution provides a discrete approximation to the normal distribution, while if p is sufficiently small, the Binomial distribution approximates the Poisson distribution.

As a conclusion to this section, the following algorithm introduces the procedure to generate pseudo random numbers from the Binomial distribution. It makes direct use of the definition of the binomial distribution as the sum of n independent Bernoulli trials:
algorithm d.4: random number generator for the Binomial distribution

1. draw independently n numbers x_{1}, \ldots, x_{n} from: $x_{i} \sim \operatorname{Bern}(p), i=1, \ldots, n$.
2. set $x=x_{1}+\ldots+x_{n}$.

Then x is a random draw from $x \sim \operatorname{Bin}(n, p)$.

d.5. Multinomial

Type:	discrete
Notation:	$x \sim M u n\left(n, p_{1}, \ldots, p_{k}\right)$
Parameters:	n (integer, number of trials)
	p_{1}, \ldots, p_{k} (outcome probabilities, $p_{i}>0 \forall i=1,2, \ldots, k$, and $\left.\sum_{i=1}^{k} p_{i}=1\right)$
Support:	$x_{1}, \ldots, x_{k} \in\{1, \ldots, n\}$, with $\sum_{i=1}^{k} x_{i}=n$
pmf:	$f\left(x_{1}, \ldots, x_{k} \mid n, p_{1}, \ldots, p_{k}\right)=\frac{n!}{x_{1}!\ldots x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}$
Kernel:	$f\left(x_{1}, \ldots, x_{k} \mid n, p_{1}, \ldots, p_{k}\right) \propto \frac{1}{x_{1}!\ldots x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}$
Normalizing constant:	$c=n!$
Mean:	$\mathbb{E}\left(x_{i}\right)=n p_{i}$
Variance:	$\operatorname{Var}\left(x_{i}\right)=n p_{i}\left(1-p_{i}\right), \operatorname{Cov}\left(x_{i}, x_{j}\right)=-n p_{i} p_{j}$
Median:	$\left\lfloor\left(n p_{i}\right\rfloor\right.$ for variable x_{i}
Mode:	\lfloor.$\left.\rfloor denotes the floor function p_{i}\right\rfloor$ for variable x_{i}
Diffuse distribution:	$f\left(x_{1}, \ldots, x_{k} \mid n, p_{1}, \ldots, p_{k}\right) \propto 1$
Related distributions:	Binomial: if $x \sim \operatorname{Mun}\left(n, p_{1}, p_{2}\right)$, then $x \sim \operatorname{Bin}\left(n, p_{1}\right)$ Categorical: if $x \sim M u n\left(1, p_{1}, \ldots, p_{k}\right)$, then $x \sim \operatorname{Cat}\left(p_{1}, \ldots, p_{k}\right)$

Table d.5: Summary of the Multinomial distribution

The multinomial distribution generalizes the Binomial distribution to the case of experiments with k possible outcomes. Concretely, the multinomial distribution considers the outcome of repeated categorical experiments, much the same way the Binomial considers the outcome of repeated Bernoulli experiments.

The marginal distributions of the k variables x_{1}, \ldots, x_{k} are $\operatorname{Binomial}: x_{i} \sim \operatorname{Bin}\left(n, p_{i}\right)$. Following, all the properties of the Binomial distribution apply to the individual variables x_{i}, including the fact that the mean and variance increase with the number of experiments n. On the other hand, the covariance between any two variables x_{i} and x_{j} is always negative, and the correlation tends to -1 as the success probabilities of variables p_{i} approaches $1-p_{j}$. This is illustrated by Figure d.5:

Figure d.5: Correlation of Multinomial distributions $(k=3, n=10)$
It is easy to generate pseudo random numbers from the Multinomial distribution, making direct use of the definition of the multinomial distribution as the sum of n independent categorical trials.

algorithm d.5: random number generator for the Multinomial distribution

1. generate n numbers z_{1}, \ldots, z_{n} from: $z_{j} \sim \operatorname{Cat}\left(p_{1}, \ldots, p_{k}\right), j=1, \ldots, n$.
2. for $i=1, \ldots, k$, set x_{i} as the number of times z_{j} was equal to i, that is, the number of times z_{j} was a success for category i.

Then $x=\left(x_{1}, \ldots, x_{k}\right)$ is a random draw from $x \sim \operatorname{Mun}\left(n, p_{1}, \ldots, p_{k}\right)$.

d.6. Poisson

Type:	discrete
Notation:	$x \sim \operatorname{Pois}(\lambda)$
Parameters:	λ (intensity parameter, scalar with $\lambda>0$)
Support:	$x \in \mathbb{Z}^{*} \quad \mathbb{Z}^{*}=\{0,1,2, \cdots\}$, the set of non-negative integers
pmf:	$f(x \mid \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!}$
Kernel:	$f(x \mid \lambda) \propto \frac{\lambda^{x}}{x!}$
Normalizing constant:	$c=e^{-\lambda}$
Mean:	λ
Variance:	λ
Median:	$\approx\left\lfloor\lambda+\frac{1}{3}-\frac{0.02}{\lambda}\right\rfloor$
Mode:	$\lfloor\lambda\rfloor$
Diffuse distribution:	set $\lambda \rightarrow \infty$
Related distributions:	Normal: if $x \sim \operatorname{Pois}(\lambda)$ with $\lambda \geq 1000$, then approximately $x \sim N(\lambda, \lambda)$

Table d.6: Summary of the Poisson distribution

The Poisson distribution considers the number of occurrences of a given event in a specified interval of time or distance. Because the number of occurrences is typically assmed to be small, the Poisson distribution is sometimes refered to as the "law of small numbers". The occurrences are also independent, namely, the occurrence of one event does not affect the probability of occurrence of a second event. Typical examples are the number of calls reaching a call center in a minute, or the number of car accidents over a 200 kilometers portion of highway.

The distribution is characterized by a unique intensity parameter λ which represents both the mean and the variance of the distribution. Following, rare events (small values of λ) consistently result in small number of occurrences, while more likely events (large values of λ) are characterized by more variability and allow for both small and large numbers of occurrences. This is represented by Figure d.6:

Figure d.6: Mean and variance of Poisson distributions
If λ is small enough, one can generate pseudo-random Poisson numbers easily with the following algorithm.
algorithm d.6: random number generator for the Poisson distribution, $\boldsymbol{\lambda} \leq \mathbf{3 0}$

1. set $p=F=e^{-\lambda}$, and $z=0$.
2. draw a random number u from $u \sim U(0,1)$.
3. if $u>F$: set $z=z+1, p=\frac{\lambda p}{z}, F=F+p$ and repeat step 3 ;
else, if $u \leq F$, set $x=z$.
Then x is a random draw from $x \sim \operatorname{Pois}(\lambda)$.
This algorithm is based upon inversion by sequential search. It is algorithm 3 in Kemp and Kemp (1991). It is fast for small values of λ. However the number of computations increases linearly with λ, so that when λ becomes large the algorithm becomes excessively slow. It also become numerically unstable because of the very small value of the $e^{-\lambda}$ term. For large values, a better alternative is algorithm 8 in Kemp and Kemp (1991). It uses a unidirectional search from the mode and looks considerably more complex. However, the different steps all rely on basic operations, which keeps the algorithm fast.

algorithm d.7: random number generator for the Poisson distribution, $\lambda>30$

preliminary phase

1. set the first series of preliminary functions:

$$
\begin{aligned}
& q_{r}(\lambda)=(2 \pi \lambda)^{-1 / 2}\left(1-\frac{1}{12 \lambda+\frac{1}{2}+\frac{293}{720 \lambda}}\right) \\
& G_{r}(\lambda)=\frac{1}{2}+\frac{2}{3}(2 \pi \lambda)^{-1 / 2}\left(1-\frac{\frac{23}{15}}{12 \lambda+\frac{15}{14}+\frac{\frac{30557}{4508}}{12 \lambda+\frac{138134432}{105880005}}}\right)
\end{aligned}
$$

2. decompose λ into $\lambda=\bar{\lambda}+\alpha$, where $\bar{\lambda}$ is an integer and $-0.5 \leq \alpha \leq 0.5$, so that $\bar{\lambda}=\lfloor\lambda\rfloor$ when $\alpha \geq 0$, and $\bar{\lambda}=\lfloor\lambda\rfloor+1$ when $\alpha<0$. This implies: $\bar{\lambda}=\lfloor\lambda+0.5\rfloor$ and $\alpha=\lambda-\bar{\lambda}$. Also, set $c=(2 \pi \bar{\lambda})^{-1 / 2}$.
3. set the second series of preliminary functions:
$p_{r}(\bar{\lambda}, \alpha)=q_{r}(\bar{\lambda})\left(\frac{\bar{\lambda}+\frac{2 \alpha}{3}-\frac{\alpha^{2}}{4}-\frac{\alpha^{2}}{18 \lambda}}{\bar{\lambda}+\frac{2 \alpha}{3}+\frac{\alpha^{2}}{4}-\frac{\alpha^{2}}{18 \bar{\lambda}}}\right)$
$F_{r}(\bar{\lambda}, \alpha)=G_{r}(\bar{\lambda})-\alpha q_{r}(\bar{\lambda})\left(\frac{\bar{\lambda}+\frac{\alpha}{2}-\frac{\alpha^{2}}{60}-\frac{\alpha^{2}}{20 \lambda}}{\bar{\lambda}+\frac{\alpha}{2}+\frac{3 \alpha^{2}}{20}-\frac{\alpha^{2}}{20 \lambda}}\right)$
It should be clear that when λ is an integer, $\lambda=\bar{\lambda}, \alpha=0$ and consequently $p_{r}(\bar{\lambda}, \alpha)=q_{r}(\lambda)$ and $F_{r}(\bar{\lambda}, \alpha)=G_{r}(\lambda)$.
4. calculate $p_{r}(\bar{\lambda}, \alpha)$.
5. draw a random number u from $u \sim U(0,1)$.

squeeze phase

6. if $u \leq 0.5$, go directly to step 9 ; else, if $u \geq 0.5+\frac{7 c}{6}$, go directly to step 12 ; else:
7. calculate $F_{r}(\bar{\lambda}, \alpha)$.
8. if $u>F_{r}(\bar{\lambda}, \alpha)$, go directly to step 12 ; else:

downward search phase

9. if $u<p_{r}(\bar{\lambda}, \alpha)$, set $x=\bar{\lambda}$ and stop; else:
10. set $p=p_{r}(\bar{\lambda}, \alpha)$.
11. for $i=0$ to $\bar{\lambda}-1$:
set $u=u-p$, and $p=\frac{(\bar{\lambda}-i) p}{\lambda}$;
if $u<p$, set $x=\bar{\lambda}-i-1$ and stop.
upward search phase
12. set $u=1-u$, and $p=p_{r}(\bar{\lambda}, \alpha)$.
13. for $i=\bar{\lambda}+1$ to $\lambda_{\max }$:
set $p=\frac{p \lambda}{i}$.
if $u<p$, set $x=i$ and stop.
set $u=u-p$.
$\lambda_{\max }$ is an upper bound factor for the upward search. Following the recommendations of Kemp and Kemp (1991), $\lambda_{\max }$ is set to $2 \bar{\lambda}+30$.
Then x is a random draw from $x \sim \operatorname{Pois}(\lambda)$.

d.7. Uniform

Type:	continuous
Notation:	$x \sim U(a, b)$
Parameters:	a (scalar, lower bound of the support) b (scalar, upper bound of the support, $b>a)$
Support:	$x \in[a, b]$
pdf:	$f(x \mid a, b)=\frac{1}{b-a}$
Kernel:	$f(x \mid a, b) \propto 1$
Normalizing constant:	$c=\frac{1}{b-a}$
Mean:	$\frac{a+b}{2}$
Variance:	$\frac{(b-a)^{2}}{12}$
Median:	$\frac{a+b}{2}$
Mode:	any $x \in[a, b]$
Diffuse distribution:	set $a \rightarrow-\infty$ and $b \rightarrow \infty$

Table d.7: Summary of the Uniform distribution

The uniform distribution is the continuous counterpart to the discrete uniform distribution. It assumes constant probability over its support, the closed interval $[a, b]$. The distribution is straightforward: the mean and median are found half-way of the support, and the variance of the distribution increases as the support enlarges, as illustrated by Figure d.7:

Figure d.7: Variance of the uniform distribution (mean=5)
In practical applications, the uniform distribution is often used whenever one wants to remain agnostic about the outcome of an experiment. This is reflected by the flat probability attributed to all the possible outcomes. For instance, a uniform distribution over $[0,1]$ can be used to model an agnostic belief about the probability that a coin yields "heads".

The uniform distribution also represents one of the most important statistical distributions because it constitutes the basis of virtually every algorithm used to generate random numbers from any other distribution. It is thus crucial to generate uniform numbers efficiently.

For years, a class of algorithms known as the linear congruential generator algorithms were used. Those algorithms are easy to understand and run fast, but they repeat themselves after a given period, and it is possible to show that the numbers that are produced are not effectively random, but lie on a finite number of hyperplanes. For these reasons, more efficient algorithms have been developed. The current standard is an algorithm known as the Mersenne twister, developed by Matsumoto and Nishimura (1998). In comparison with the linear congruential generator algorithms, the Mersenne twister benefits from longer periods, and the numbers produced offer better randomness properties. The algorithm is fairly complicated and it thus not introduced in details here. Most mathematical software applications like Matlab, R or NumPy integrate built-in functions for this algorithm.

To provide an intuition of how uniform numbers can be easily generated, the linear congruential generator algorithm is introduced. This is only for the sake of pedagogy, as again the Mersenne twister represents a better alternative.
algorithm d.8: random number generator for the uniform distribution (linear congruential generator)

1. set the following integer values:
m, with $m>0$: the modulus
a, with $0<a<m$: the multiplier
c, with $0 \leq c<m$: the increment
x_{0}, with $0 \leq x_{0}<m$: the seed or initial value
2. generate any quantity of random numbers from the following recurrence relation:
$x_{n}=\left(a x_{n-1}+c\right) \bmod m$
where " $\left(a x_{n-1}+c\right)$ mod m " means: "divide $\left(a x_{n-1}+c\right)$ by m, and take the remainder".
Then x_{1}, x_{2}, \ldots are random draws from $x \sim U(0,1)$.

The preceding algorithm produces random numbers from $x \sim U(0,1)$. It is then trivial to use those numbers to generate random numbers from a general distribution $x \sim U(a, b)$, using the following algorithm:

algorithm d.9: random number generator for the uniform distribution

1. draw a random number u from $u \sim U(0,1)$.
2. set $x=a+u(b-a)$.

Then x is a random draw from $x \sim U(a, b)$.

d.8. Normal

Type:	continuous
Notation:	$x \sim N(\mu, \sigma)$
Parameters:	μ (mean, scalar) σ (variance, scalar with $\sigma>0)$
Support:	$x \in \mathbb{R}$
pdf:	$f(x \mid \mu, \sigma)=(2 \pi \sigma)^{-1 / 2} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma}\right)$
Kernel:	$f(x \mid \mu, \sigma) \propto \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma}\right)$
Normalizing constant:	$c=(2 \pi \sigma)^{-1 / 2}$
Mean:	μ
Variance:	μ
Median:	μ
Mode:	set $\mu=0$ and $\sigma \rightarrow \infty($ proper distribution $)$ or set $f(x \mid \mu, \sigma) \propto 1$ (improper distribution)
Diffuse distribution:	-

Table d.8: Summary of the normal distribution

The normal distribution represents by far the most important distribution in statistics. One reason is the remarkable result known as the central limit theorem. Another reason is the shape of the distribution which makes it an attractive candidate for many types of random variables. First, the support of the distribution ranges from $-\infty$ to $+\infty$, making the normal distribution suitable for random variables taking any real value. Second, the bell shape of the density function implies that the bulk of probabilities are concentrated around the mean, making extreme events (values far away from the mean) unlikely. Finally, the distribution is symmetric around the mean, reflecting the fact that many random experiments behave similarly on both sides of the mean. Following, the normal distribution can be used for a wide range of real-life phenomena. Typical examples are the distribution of adult heights, the distribution of marks on tests, or stock market returns.

The normal distribution is characterised by two parameters. The first is the mean parameter μ. By changing μ, the distribution shifts rightward or leftward, without affecting the general shape, as shown by Figure d.8:

Figure d.8: Mean of the normal distribution (unit variance)

The second parameter is the variance σ. Unlike most textbooks, this manual uses σ and not σ^{2} to denote the variance. This makes notations more consistent with other distributions (in particular the other normal and student distributions), and avoid the ambiguity of treating the square superscript as a notation or as an actual mathematical operator. For a given mean μ, larger values of σ increase the spread and the flatness of the distribution, resulting in higher variance. This is illustrated by Figure d.9:

Figure d.9: Variance of the normal distribution (zero mean)

The special case where the mean μ is equal to 0 and the variance σ is equal to 1 is known as the standard normal distribution. From the standard normal distribution, is easy to construct a normal distribution with arbitrary mean and variance by using the following property, known as the affine property of the normal distribution:
property d.1: let x be a normally distributed random variable: $x \sim N(\mu, \sigma)$, and let $y=a x+b$. Then: $y \sim N\left(a \mu+b, a^{2} \sigma\right)$.

A plethora of different algorithms is available to generate pseudo random normal numbers. In practice, it is not necessary to code any of them since all mathematical softwares are equipped with built-in functions to generate random normal numbers, though different softwares use different methods. For instance, Matlab uses the Ziggurat Method introduced by Marsaglia and Tsang (2000b), NumPy uses the Box-Muller approach from Box and Muller (1958), and R implements an inversion procedure identifying cumulative densities with Wichura (1988). The algorithm proposed here is simple and relies on the polar method proposed by Marsaglia and Bray (1964).

algorithm d.10: random number generator for the standard normal distribution

1. draw two random numbers u_{1} and u_{2} from $u_{1}, u_{2} \sim U(-1,1)$.
2. set $u_{3}=u_{1}^{2}+u_{2}^{2}$; if $u_{3} \geq 1$, go back to step 1 ; else:
3. define: $x_{1}=u_{1} \sqrt{\frac{-2 \ln \left(u_{3}\right)}{u_{3}}}$ and $x_{2}=u_{2} \sqrt{\frac{-2 \ln \left(u_{3}\right)}{u_{3}}}$

Then x_{1} and x_{2} are random draws from $x_{1}, x_{2} \sim N(0,1)$.
Once one can generate draws from $x \sim N(0,1)$, it becomes easy to generate random numbers from an arbitrary normal distribution $x \sim N(\mu, \sigma)$, using property d.1.

algorithm d.11: random number generator for the normal distribution

1. draw z from the standard normal distribution: $z \sim N(0,1)$.
2. set $x=\sqrt{\sigma} z+\mu$.

Then x is a random draw from $x \sim N(\mu, \sigma)$.

d.9. Multivariate normal

Type:	continuous
Notation:	$x \sim N(\mu, \Sigma)$
Parameters:	μ (n-dimensional mean vector) Σ ($n \times n$ variance-covariance matrix, symmetric and positive definite)
Support:	$x \in \mathbb{R}^{n}$, the set of $n \times 1$ vectors of real numbers
pdf:	$f(x \mid \mu, \Sigma)=(2 \pi)^{-n / 2}\|\Sigma\|^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right)$
Kernel:	$f(x \mid \mu, \Sigma) \propto \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right)$
Normalizing constant:	$c=(2 \pi)^{-n / 2}\|\Sigma\|^{-1 / 2}$
Mean:	μ
Variance:	Σ
Median:	μ
Mode:	μ
Diffuse distribution:	set $\mu=0$ and $\Sigma=\sigma I_{n}$, with σ a scalar such that $\sigma \rightarrow \infty$ (proper distribution) or set $f(x \mid \mu, \Sigma) \propto 1$ (improper distribution)
Related distributions:	Normal: if $n=1$, then $x \sim N(\mu, \sigma)$ (univariate normal)

Table d.9: Summary of the Multivariate normal distribution

The multivariate normal distribution represents a generalization of the one-dimensional normal distribution to n-dimensional random vectors. It is used to model the joint distribution of several normal random variables, possibly correlated. For instance, the height and weight of the adult population of a given country are both approximately distributed, and certainly correlated.

The parallel with the univariate normal distribution is straightforward. The mean of the joint distribution is determined by the n-dimensional vector μ. A change in μ_{j} (the $j^{\text {th }}$ entry of μ) switches the distribution rightward or leftward in the $j^{\text {th }}$ dimension, leaving the other dimensions unaffected. This is illustrated by figure d. 10 .

Figure d.10: Mean of the multivariate normal distribution ($n=2$, unit variance)

A similar logic applies to the variance of the distribution: an increase in $\sigma_{j j}$ (the $j^{\text {th }}$ diagonal entry of the variance-covariance matrix Σ) results in a larger spread of the distribution in dimension j, leaving the spread of other dimensions unchanged. This is illustrated by Figure d.11:

Figure d.11: Variance of the multivariate normal distribution ($n=2$, mean=0)

A specificity of the multivariate normal compared to the univariate normal is the possible existence of correlation between the different variables. This is defined by the covariance (off-diagonal) entries of Σ. When correlation is positive, the two variables tend to produce similar values and the density function is oriented upward. When correlation is negative, the two variables tend to produce opposite values and the density function is oriented downward. This is illustrated by Figure d.12:

Figure d.12: Correlation of the multivariate normal distribution ($n=2$, mean=0, variance=1)
The multivariate normal distribution has a number of convenient properties. Because this distribution is used extensively in Bayesian analysis, it is useful to detail some of those properties. The first property represents the multivariate generalisation of the affine property of the Normal distribution. It says that linear combinations of normal random variables are also normal. This is stated in the following property.
property d.2: let x be a random variable with: $x \sim N(\mu, \Sigma)$. Let A be some matrix and b be some vector such that $y=A x+b$ is defined. Then:
$y \sim N\left(A \mu+b, A \Sigma A^{\prime}\right)$
The second property is very useful and relates to the marginal distributions of a multivariate normal distribution. It states that the marginal distributions of a multivariate normal distribution are themselves normal.
property d.3: let x be a random variable with: $x \sim N(\mu, \Sigma)$. Let x, μ and Σ be partitioned the following way:
$x=\left(\begin{array}{c}\frac{x_{1}}{x_{2}} \\ \frac{\vdots}{x_{1}} \\ x_{p}\end{array} n_{n_{2}} \begin{array}{c}n_{p} \\ \vdots \\ \frac{\mu_{1}}{\mu_{2}}\end{array}\right) \begin{gathered}n_{1} \\ n_{2} \\ \vdots \\ n_{p}\end{gathered}$

$$
\Sigma=\left(\begin{array}{c|c|c|c}
\Sigma_{11} & \Sigma_{12} & \ldots & \Sigma_{1 p} \\
\hline \Sigma_{21} & \Sigma_{22} & \ldots & \Sigma_{2 p} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline \Sigma_{p 1} & \Sigma_{p 2} & \ldots & \Sigma_{p p} \\
n_{1} & n_{2} & \ldots & n_{p}
\end{array}\right) \begin{gathered}
n_{1} \\
n_{2} \\
\vdots \\
n_{p}
\end{gathered}
$$

with $n_{1}+n_{2}+\ldots+n_{p}=n$.
Then $x_{i} \sim N\left(\mu_{i}, \Sigma_{i i}\right)$, for all $i=1,2, \ldots, p$.
A corollary obtains when the partition is realised at the entry level, for then every individual entry of a multivariate normal distribution follows a univariate normal distribution:
property d.4: let x be a random variable with: $x \sim N(\mu, \Sigma)$. Then:
$x_{i} \sim N\left(\mu_{i}, \Sigma_{i i}\right) \quad, \quad$ for all $i=1,2, \ldots, n$.
The converse is not generally true: random variables which are individually normally distributed are not necessarily jointly normal. This will be the case however if the random variables are independent, and this is stated in the next property.
property d.5: let $x_{1}, x_{2}, \ldots, x_{p}$ be p independent multivariate random variables with:
$x_{i} \sim N\left(\mu_{i}, \Sigma_{i i}\right)$.
Then:
$x \sim N(\mu, \Sigma)$, with:
$x=\left(\begin{array}{c}\frac{x_{1}}{x_{2}} \\ \frac{n_{1}}{n_{1}} \\ n_{2} \\ \vdots \\ x_{p}\end{array}\right)_{n_{p}} \quad \mu=\left(\begin{array}{c}\frac{\mu_{1}}{\mu_{2}} \\ \hline \vdots \\ \hline \mu_{p}\end{array}\right) \begin{gathered}n_{1} \\ n_{2} \\ \vdots \\ n_{p}\end{gathered}$
\(\Sigma=\left(\begin{array}{c|c|c|c}\Sigma_{11} \& 0 \& ··· \& 0

\hline 0 \& \Sigma_{22} \& ··· \& 0

\hline \vdots \& \vdots \& \ddots \& \vdots

\hline 0 \& 0 \& ··· \& \Sigma_{p p}\end{array}\right)\)| n_{1} |
| :---: |
| n_{2} |
| \vdots |
| n_{1} |n_{2}

and $n=n_{1}+n_{2}+\ldots+n_{p}$.

Finally, the following algorithms introduce the procedures to generate pseudo random numbers from the multivariate normal distribution. First, the next algorithm considers the generation of random numbers from the standard multivariate normal distribution.

algorithm d.12: random number generator for the standard multivariate normal distribution

1. draw p random numbers x_{1}, \ldots, x_{n} from the standard normal distribution: $x_{i} \sim N(0,1)$.
2. organise these n values in a n-dimensional column vector x.

Then from property d.5, $x \sim N\left(0, I_{n}\right)$.
The next algorithm develops the procedure to draw from an arbitrary multivariate normal distribution:
algorithm d.13: random number generator for the multivariate normal distribution

1. calculate any matrix G such that $G G^{\prime}=\Sigma$. In practice, G is often chosen to be the Cholesky factor of Σ.
2. draw a random vector z from the standard multivariate normal distribution: $z \sim N\left(0, I_{n}\right)$.
3. set $x=\mu+G z$.

Then from property d. $2, x$ is a random draw from $x \sim N(\mu, \Sigma)$.

d.10. Matrix normal

Type:	continuous
Notation:	$X \sim M N(M, \Sigma, \Omega)$
Parameters:	$M(n \times m$ location matrix $)$
	$\Sigma(n \times n$ scale matrix, symmetric and positive definite)
	Ω ($m \times m$ scale matrix, symmetric and positive definite)
Support:	$X \in \mathbb{R}^{n \times m}$, the set of $n \times m$ matrices of real numbers
pdf:	$f(X \mid M, \Sigma, \Omega)=(2 \pi)^{-n m / 2}\|\Sigma\|^{-m / 2}\|\Omega\|^{-n / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left[\Omega^{-1}(X-M)^{\prime} \Sigma^{-1}(X-M)\right]\right)$
Kernel:	$f(X \mid M, \Sigma, \Omega) \propto \exp \left(-\frac{1}{2} \operatorname{tr}\left[\Omega^{-1}(X-M)^{\prime} \Sigma^{-1}(X-M)\right]\right)$
Normalizing constant:	$c=(2 \pi)^{-n m / 2}\|\Sigma\|^{-m / 2}\|\Omega\|^{-n / 2}$
Mean:	M
Variance:	$\operatorname{Var}(\operatorname{vec}(X))=\Omega \otimes \Sigma$
Median:	M
Mode:	M
Diffuse distribution:	set $M=0, \Sigma=\sigma I_{n}$ and $\Omega=\omega I_{m}$, with σ and ω scalars such that $\sigma, \omega \rightarrow \infty$ (proper distribution) or set $f(X \mid M, \Sigma, \Omega) \propto 1$ (improper distribution)
Related distributions:	Multivariate normal: if $m=1$, then $x \sim N(\mu, \Sigma)$
	Normal: if $n=1$ and $m=1$, then $x \sim N(\mu, \sigma)$

Table d.10: Summary of the Matrix normal distribution

The matrix normal distribution represents a generalization of the multivariate normal distribution to $n \times m$ random matrices. It is a rather uncommon distribution, and deriving its properties is not trivial. Most of the treatment in this section comes from Gupta and Nagar (2000), chapter 2.

Compared to its univariate and multivariate counterparts, the matrix normal distribution adds an additional column dimension of size m. The location matrix M represents the mean of the distribution. Also, just the same way the Σ matrix represents the row covariances for the multivariate normal distribution, the Ω matrix defines the column covariances for the matrix normal. When $m=1$, the matrix normal degenerates into a multivariate normal distribution, and when $m=n=1$, it becomes a simple normal distribution.

There exists a general equivalence between the matrix normal and multivariate normal distribution. Some authors actually use this feature as a definition for the matrix normal distribution. This is stated in the following property:
property d.6: the random variable X is a random variable with: $X \sim M N(M, \Sigma, \Omega)$ if and only if $\operatorname{vec}(X)$ is a random variable with: $\operatorname{vec}(X) \sim N(\operatorname{vec}(M), \Omega \otimes \Sigma)$.

The second property represents the equivalent of the affine property for the multivariate normal distribution.
property d.7: let X be a random variable with: $X \sim M N(M, \Sigma, \Omega)$; let A, B and C be matrices such that $A X B+C$ is defined, with A and B of maximum rank n and m respectively. Then:
$A X B+C \sim M N\left(A M B+C, A \Sigma A^{\prime}, B^{\prime} \Omega B\right)$
The third property is related to the marginal distributions of matrix normal random variables:
property d.8: let X be a random variable with: $X \sim M N(M, \Sigma, \Omega)$. Let X, M, Σ and Ω be partitioned the following ways:
$X=\left(\begin{array}{c|c|c|c}X_{11} & X_{12} & \ldots & X_{1 q} \\ \hline X_{21} & X_{22} & \ldots & X_{2 q} \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline X_{p 1} & X_{p 2} & \ldots & X_{p q} \\ m_{1} & m_{2} & \ldots & m_{q}\end{array}\right) \begin{gathered}n_{1} \\ n_{1} \\ n_{2} \\ n_{p}\end{gathered}$

$$
M=\left(\begin{array}{c|c|c|c}
M_{11} & M_{12} & \ldots & M_{1 q} \\
\hline M_{21} & M_{22} & \ldots & M_{2 q} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline M_{p 1} & M_{p 2} & \ldots & M_{p q} \\
m_{1} & m_{2} & \ldots & m_{q}
\end{array}\right) \begin{gathered}
m_{1} \\
n_{2} \\
\vdots \\
n_{p}
\end{gathered}
$$

$\Sigma=\left(\begin{array}{c|c|c|c}\Sigma_{11} & \Sigma_{12} & \ldots & \Sigma_{1 p} \\ \hline \Sigma_{21} & \Sigma_{22} & \ldots & \Sigma_{2 p} \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline \Sigma_{p 1} & \Sigma_{p 2} & \ldots & \Sigma_{p p} \\ n_{1} & n_{2} & \ldots & n_{p}\end{array}\right) \begin{gathered}n_{p} \\ n_{1} \\ n_{2} \\ n_{p}\end{gathered}$

$$
\Omega=\left(\begin{array}{c|c|c|c}
\Omega_{11} & \Omega_{12} & \ldots & \Omega_{1 q} \\
\hline \Omega_{21} & \Omega_{22} & \ldots & \Omega_{2 q} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline \Omega_{q 1} & \Omega_{q 2} & \ldots & \Omega_{q q} \\
m_{1} & m_{2} & \ldots & m_{q}
\end{array}\right) \begin{gathered}
m_{1} \\
m_{2} \\
\vdots \\
m_{q}
\end{gathered}
$$

with $n_{1}+n_{2}+\ldots+n_{p}=n$, and $m_{1}+m_{2}+\ldots+m_{q}=m$.
Then $X_{i j} \sim M N\left(M_{i j}, \Sigma_{i i}, \Omega_{j j}\right)$, for all partitions $i=1,2, \ldots, p$, and all partitions $j=1,2, \ldots, q$.
This property states that any subset of a matrix normal distribution is itself matrix normal, with the mean and variance parameters defined in accordance with the considered partition. When the partition is realised at the entry level, one obtains that every individual entry of a matrix normal distribution follows a univariate normal distribution.
property d.9: let X be a random variable with: $X \sim M N(M, \Sigma, \Omega)$. Then:
$x_{i j} \sim N\left(m_{i j}, \sigma_{i i} \omega_{j j}\right) \quad, \quad$ for all $i=1,2, \ldots, p$, and all $j=1,2, \ldots, q$.

Finally, the following algorithms introduce the procedures to generate pseudo random numbers from the matrix normal distribution. First, the next algorithm considers the generation of random numbers from the standard matrix normal distribution.

algorithm d.14: random number generator for the standard matrix normal distribution

1. draw a $n m$-dimensional vector x from the standard multivariate normal distribution: $x \sim N\left(0, I_{n m}\right)$.
2. rearrange x into the $n \times m$ matrix X.

Then from property d.6, X is a random draw from $X \sim M N\left(0, I_{n}, I_{m}\right)$.
The next algorithm develops the procedure to draw from an arbitrary matrix normal distribution:

algorithm d.15: random number generator for the matrix normal distribution

1. calculate any matrix G such that $G G^{\prime}=\Sigma$, and any matrix H such that $H H^{\prime}=\Omega$. In practice, G and H are often chosen to be the Cholesky factors of Σ and Ω.
2. draw a random matrix Z from $Z \sim M N\left(0, I_{n}, I_{m}\right)$.
3. calculate $X=M+G Z H^{\prime}$.

Then from property d.7, X is a random draw from $X \sim M N(M, \Sigma, \Omega)$.

d.11. Student

Type:	continuous			
Notation:	$x \sim T(\mu, \sigma, v)$			
Parameters:	μ (location, scalar) σ (scale, scalar with $\sigma>0)$ v (degrees of freedom, scalar with $v>0)$			
Support:	$x \in \mathbb{R}$	\quad	pdf:	$\Gamma(x \mid \mu, \sigma, v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)}(v \pi \sigma)^{-1 / 2}\left(1+\frac{1}{v} \frac{(x-\mu)^{2}}{\sigma}\right)^{-(v+1) / 2}$
:---	:---			
Kernel:	$c=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)}(v \pi \sigma)^{-1 / 2}$			
Normalizing constant: Gamma function, with $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$				
Mean:	μ for $v>1$, else undefined			
Variance:	$\frac{v}{v-2} \sigma$ for $v>2$, else undefined			
Median:	μ			

Table d.11: Summary of the Student distribution

The student distribution (sometimes called the Student's t distribution or simply the t distribution) shares much with the normal distribution. It is symmetric around its mean represented by the location parameter μ, and it is also bell-shaped. One fundamental difference with the normal distribution is that the Student distribution has a fat tail. This means the the peak of the distribution is less pronounced, while the tails of the distribution (the extremities) are thicker. As a consequence, values far away from the mean have a higher probability to happen than with the normal distribution. This makes the Student distribution suitable for random variables with higher probabilities of rare events. Typical applications are found in finance, to model for instance classes of assets for which high returns or losses occur more frequently than for other assets.

How fat the tails of the distribution are is determined by the parameter v called the degrees of freedom. The smaller v, the fatter the tails and the higher the probability of obtaining values far away from the mean. Conversely, the larger v, the more limited will be the fatness of the tails. A famous property of the Student distribution is that as $v \rightarrow \infty$ the Student distribution $T(\mu, \sigma, v)$ converges to a Normal distribution $N(\mu, \sigma)$. The limiting case $v \rightarrow \infty$ can then be interpreted as a situation where the additional fatness of the tail has been completely eliminated, turning the Student distribution into its Normal counterpart. This is illustrated by Figure d.13.

Figure d.13: Fatness of the student distribution $T(0,1, v)$ (grey curve is $N(0,1)$)
The final parameter σ known as the scale parameter is not directly interpretable as the variance of the distribution. While larger values of σ do imply a larger variance, the complete variance value is determined by both σ and the degrees of freedom v. Smaller values of v imply a larger variance of the distribution, consistently with the fact that the degrees of freedom determine the fatness of the distribution. Only when $v \rightarrow \infty$ does the variance tend to σ, the variance of the Normal distribution. This once again reflects convergence of the Student distribution to the Normal distribution as $v \rightarrow \infty$.

Similarly to the normal distribution, the Student distribution has the following affine property:
property d.10: let x be a random variable with: $x \sim T(\mu, \sigma, v)$, and let $y=a x+b$. Then:
$y \sim T\left(a \mu+b, a^{2} \sigma, v\right)$.

The following algorithm introduces the procedure to generate pseudo random numbers from the standard Student distribution.

algorithm d.16: random number generator for the standard Student distribution

1. draw a random number s from $s \sim I G\left(\frac{v}{2}, \frac{v}{2}\right)$.
2. draw a random number x from $x \sim N(0, s)$.

Then x is a random draw from $x \sim T(0,1, v)$.
The next algorithm develops the procedure to draw from an arbitrary Student distribution:
algorithm d.17: random number generator for the Student distribution

1. draw a random number z from $z \sim T(0,1, v)$.
2. set $x=\sqrt{\sigma} z+\mu$.

Then from property d.10, x is a random draw from $x \sim T(\mu, \sigma, v)$.

d.12. Multivariate Student

Type:	continuous
Notation:	$x \sim T(\mu, \Sigma, v)$
Parameters:	μ (n-dimensional location vector) $\Sigma(n \times n$ scale matrix, symmetric and positive definite) v (degrees of freedom, scalar with $v>0$)
Support:	$x \in \mathbb{R}^{n}$, the set of $n \times 1$ vectors of real numbers
pdf:	$f(x \mid \mu, \Sigma, v)=\frac{\Gamma\left(\frac{v+n}{2}\right)}{\Gamma\left(\frac{v}{2}\right)}(v \pi)^{-n / 2}\|\Sigma\|^{-1 / 2}\left(1+\frac{1}{v}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right)^{-(v+n) / 2}$ $\Gamma(z)$ is the Gamma function, with $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$
Kernel:	$f(x \mid \mu, \Sigma, v) \propto\left(1+\frac{1}{v}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right)^{-(v+n) / 2}$
Normalizing constant:	$c=\frac{\Gamma\left(\frac{v+n}{2}\right)}{\Gamma\left(\frac{v}{2}\right)}(v \pi)^{-n / 2}\|\Sigma\|^{-1 / 2}$
Mean:	μ for $v>1$, else undefined
Variance:	$\frac{v}{v-2} \Sigma$ for $v>2$, else undefined
Median:	μ
Mode:	μ
Diffuse distribution:	set $\mu=0$ and $\Sigma=\sigma I_{n}$, with σ a scalar such that $\sigma \rightarrow \infty$ (proper distribution) or set $f(x \mid \mu, \Sigma, v) \propto 1$ (improper distribution)
Related distributions:	Student: if $n=1$, then $x \sim T(\mu, \sigma, v)$ Multivariate normal: if $x \sim T(\mu, \Sigma, v)$ and $v \rightarrow \infty$ then approximately: $x \sim N(\mu, \Sigma)$

Table d.12: Summary of the multivariate Student distribution

The multivariate Student distribution generalises the Student distribution to n-dimensional random vectors, much the same way the multivariate normal generalises the univariate normal to random vectors. Its mean is given by the location vector μ, while its variance and covariance are proportional to the diagonal and off-diagonal terms of Σ, respectively. A change in any of these terms results in a change of the shape of the density in a way that is similar to the multivariate normal.
The degrees of freedom v affect the distribution just like they do for the univariate case: a smaller value of v increases the fatness of the tails, making values close to the mean less likely to occur, and values further away more likely. Also, similarly to the univariate case, when $v \rightarrow \infty$, the multivariate Student distribution converges to the multivariate normal distribution.

Similarly to the univariate case, there exists an affine property for the multivariate Student distribution:
property d.11: let x be a random variable with: $x \sim T(\mu, \Sigma, v)$. Let A be some matrix and b be some vector such that $y=A x+b$ is defined. Then:
$y \sim T\left(A \mu+b, A \Sigma A^{\prime}, v\right)$
The second property states that the marginal distributions of a multivariate Student distribution are themselves Student:
property d.12: let x be a random variable with: $x \sim T(\mu, \Sigma, v)$. Let x, μ and Σ be partitioned the following way:
$x=\left(\begin{array}{c}\frac{x_{1}}{x_{2}} \\ \vdots \\ \frac{x_{p}}{p}\end{array}\right) \begin{gathered}n_{1} \\ n_{2} \\ \vdots \\ n_{p}\end{gathered} \quad \quad \mu=\left(\begin{array}{c}\frac{\mu_{1}}{\mu_{2}} \\ \vdots \\ \mu_{p}\end{array}\right) \begin{gathered}n_{1} \\ n_{2} \\ \vdots \\ n_{p}\end{gathered}$ $\Sigma=\left(\begin{array}{c|c|c|c}\Sigma_{11} & \Sigma_{12} & \ldots & \Sigma_{1 p} \\ \hline \Sigma_{21} & \Sigma_{22} & \ldots & \Sigma_{2 p} \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline \Sigma_{p 1} & \Sigma_{p 2} & \ldots & \Sigma_{p p} \\ n_{1} & n_{2} & \ldots & n_{p}\end{array}\right) \begin{gathered}n_{1} \\ n_{2} \\ \vdots \\ n_{p}\end{gathered}$
with $n_{1}+n_{2}+\ldots+n_{p}=n$.
Then $x_{i} \sim T\left(\mu_{i}, \Sigma_{i i}, v\right)$, for all $i=1,2, \ldots, p$.
A corollary obtains when the partition is realised at the entry level, for then every individual entry of a multivariate Student distribution follows a univariate Student distribution:
property d.13: let x be a random variable with: $x \sim T(\mu, \Sigma, v)$. Then:
$x_{i} \sim T\left(\mu_{i}, \Sigma_{i i}, v\right) \quad$, for all $i=1,2, \ldots, n$.

The following algorithm introduces the procedure to generate pseudo random numbers from the standard multivariate Student distribution.

algorithm d.18: random number generator for the standard multivariate Student distribution

1. draw a random number s from $s \sim I G\left(\frac{v}{2}, \frac{v}{2}\right)$.
2. draw a random vector x from $x \sim N\left(0, s I_{n}\right)$.

Then $x \sim T\left(0, I_{n}, v\right)$.
The next algorithm develops the procedure to draw from an arbitrary multivariate Student distribution:

algorithm d.19: random number generator for the multivariate Student distribution

1. calculate any matrix G such that $G G^{\prime}=\Sigma$. In practice, G is often chosen to be the Cholesky factor of Σ.
2. draw a random number z from the standard multivariate Student distribution: $z \sim T\left(0, I_{n}, v\right)$.
3. set $x=\mu+G z$.

Then from property d.11, x is a random draw from $x \sim T(\mu, \Sigma, v)$.

d.13. Matrix Student

Type:	continuous
Notation:	$X \sim M T(M, \Sigma, \Omega, v)$
Parameters:	$M(n \times m$ location matrix $)$ $\Sigma(n \times n$ scale matrix, symmetric and positive definite) $\Omega(m \times m$ scale matrix, symmetric and positive definite) v (degrees of freedom, scalar with $v>0$)
Support:	$X \in \mathbb{R}^{n \times m}$, the set of $n \times m$ matrices of real numbers
pdf:	$\begin{aligned} f(X \mid M, \Sigma, \Omega, v)= & \frac{\Gamma_{n}\left(\frac{v+n+m-1}{2}\right)}{\Gamma_{n}\left(\frac{v+n-1}{2}\right)}(v \pi)^{-n m / 2}\|\Omega\|^{-n / 2}\|\Sigma\|^{-m / 2} \\ & \times\left\|I_{m}+\frac{1}{v} \Omega^{-1}(X-M)^{\prime} \Sigma^{-1}(X-M)\right\|^{-(v+n+m-1) / 2} \end{aligned}$ $\Gamma_{n}(z)$ is the multivariate Gamma function, with $\Gamma_{n}(z)=\pi^{n(n-1) / 4} \prod_{i=1}^{n} \Gamma\left(z+\frac{1-i}{2}\right)$
Kernel:	$f(X \mid M, \Sigma, \Omega, v) \propto\left\|I_{m}+\frac{1}{v} \Omega^{-1}(X-M)^{\prime} \Sigma^{-1}(X-M)\right\|^{-(v+n+m-1) / 2}$
Normalizing constant:	$c=\frac{\Gamma_{n}\left(\frac{v+n+m-1}{2}\right)}{\Gamma_{n}\left(\frac{v+n-1}{2}\right)}(\nu \pi)^{-n m / 2}\|\Omega\|^{-n / 2}\|\Sigma\|^{-m / 2}$
Mean:	M
Variance:	$\operatorname{Var}(\operatorname{vec}(X))=\frac{v}{v-2}(\Omega \otimes \Sigma)$ for $v>2$, else undefined
Median:	M
Mode:	M
Diffuse distribution:	set $M=0, \Sigma=\sigma I_{n}$ and $\Omega=\omega I_{m}$, with σ and ω scalars such that $\sigma, \omega \rightarrow \infty$ (proper distribution) or set $f(X \mid M, \Sigma, \Omega, v) \propto 1$ (improper distribution)
Related distributions:	Multivariate Student: if $m=1$, then $X \sim T(\mu, \Sigma, v)$ Student: if $n=1$ and $m=1$, then $x \sim T(\mu, \sigma, v)$ Matrix normal: if $X \sim M T(M, \Sigma, \Omega, v)$ and $v \rightarrow \infty$ then approximately: $X \sim M N(M, \Sigma, \Omega)$

The matrix Student distribution generalises the multivariate Student distribution to $n \times m$-dimensional matrices, much the same way the matrix normal distribution generalises the multivariate normal to normal random matrices. There exist several different parameterisations for the matrix Student distribution (see for instance Dickey (1967), Box and Tiao (1973) and Gupta and Nagar (2000) for an overview of the different formulations), which complicates the analysis. The parameterisations retained in this manual is that of Gupta and Nagar (2000), slightly adapted to make it consistent with the formulation of the other Student and normal distributions. See Appendix at the end of the section for additional details.

The location parameter M represents the mean of the distribution, while the row and column covariances obtains from the two scale matrices Σ and Ω. The degrees of freedom v define the fatness of the tails, lower values of v implying higher probabilities in the tails. Reducing the column dimension m to 1 turns the distribution into a multivariate Student, while reducing both the column and rows dimensions m and n to 1 collapses it to a univariate Student dimension. Finally, as the degrees of freedom v tends to infinity, the matrix Student distribution converges to a matrix normal distribution.

Similarly to the other Student distributions, there exists an affine property for the matrix Student distribution.
property d.14: let X be a random variable with: $X \sim M T(M, \Sigma, \Omega, v)$; let A, B and C be matrices such that $A X B+C$ is defined, with A and B of maximum rank n and m respectively. Then:
$A X B+C \sim M T\left(A M B+C, A \Sigma A^{\prime}, B^{\prime} \Omega B, v\right)$.
The next property derives the marginal distributions of the matrix Student distribution.
property d.15: let X be a random variable with: $X \sim M T(M, \Sigma, \Omega, v)$. Let X, M, Σ and Ω be partitioned the following ways:
$X=\left(\begin{array}{c|c|c|c}X_{11} & X_{12} & \ldots & X_{1 q} \\ \hline X_{21} & X_{22} & \ldots & X_{2 q} \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline X_{p 1} & X_{p 2} & \ldots & X_{p q} \\ m_{1} & m_{2} & \ldots & m_{q}\end{array}\right) \begin{gathered}n_{1} \\ n_{2} \\ \vdots \\ n_{p}\end{gathered}$

$$
M=\left(\begin{array}{c|c|c|c}
M_{11} & M_{12} & \ldots & M_{1 q} \\
\hline M_{21} & M_{22} & \ldots & M_{2 q} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline M_{p 1} & M_{p 2} & \ldots & M_{p q} \\
m_{1} & m_{2} & \ldots & m_{q}
\end{array}\right) \begin{gathered}
n_{1} \\
n_{2} \\
\vdots \\
n_{p}
\end{gathered}
$$

$\Sigma=\left(\begin{array}{c|c|c|c}\Sigma_{11} & \Sigma_{12} & \ldots & \Sigma_{1 p} \\ \hline \Sigma_{21} & \Sigma_{22} & \ldots & \Sigma_{2 p} \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline \Sigma_{p 1} & \Sigma_{p 2} & \ldots & \Sigma_{p p} \\ n_{1} & n_{2} & \ldots & n_{p}\end{array}\right) \begin{gathered}n_{1} \\ n_{2} \\ \vdots \\ n_{p}\end{gathered}$

$$
\Omega=\left(\begin{array}{c|c|c|c}
\Omega_{11} & \Omega_{12} & \ldots & \Omega_{1 q} \\
\hline \Omega_{21} & \Omega_{22} & \ldots & \Omega_{2 q} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline \Omega_{q 1} & \Omega_{q 2} & \ldots & \Omega_{q q} \\
m_{1} & m_{2} & \ldots & m_{q}
\end{array}\right) \begin{gathered}
m_{1} \\
m_{2} \\
\vdots \\
m_{q}
\end{gathered}
$$

with $n_{1}+n_{2}+\ldots+n_{p}=n$, and $m_{1}+m_{2}+\ldots+m_{q}=m$.
Then $X_{i j} \sim M T\left(M_{i j}, \Sigma_{i i}, \Omega_{j j}, v\right)$, for all partitions $i=1,2, \ldots, p$, and all partitions $j=1,2, \ldots, q$.
A corollary obtains when the partition is realised at the entry level, for then every individual entry of a multivariate Student distribution follows a univariate Student distribution:
property d.16: let X be a random variable with: $X \sim M T(M, \Sigma, \Omega, v)$. Then:
$x_{i j} \sim T\left(m_{i j}, \Sigma_{i i} \times \Omega_{j j}, v\right)$, for all $i=1,2, \ldots, n$, and all $j=1,2, \ldots, m$.
The next property is a simple one, but it is useful for the purpose of numerical computations:
property d.17: let X be a random variable with: $X \sim M T(M, \Sigma, \Omega, v)$. Then:
$X^{\prime} \sim M T\left(M^{\prime}, \Omega, \Sigma, v\right)$.
The following algorithm introduces the procedure to generate pseudo random numbers from the standard matrix Student distribution.
algorithm d.20: random number generator for the standard matrix Student distribution
If $m \leq n$:

1. draw a $m \times m$ random matrix Φ from $\Phi \sim I W\left(v+m-1, v I_{m}\right)$.
2. draw a random matrix X from $X \sim M N\left(0, I_{n}, \Phi\right)$.

Else, if $m>n$:

1. draw a $n \times n$ random matrix Φ from $\Phi \sim I W\left(v+n-1, v I_{n}\right)$.
2. draw a random matrix Y from $Y \sim M N\left(0, I_{m}, \Phi\right)$.
3. set $X=Y^{\prime}$.

Then $X \sim M T\left(0, I_{n}, I_{m}, v\right)$.
The separate treatment of the two cases $m \leq n$ and $m>n$ guarantees that the Inverse Wishart draw is realised on the smallest dimension of X, in order to maximise efficiency. The case $m>n$ is obtained by direct application of property d.17. The final algorithm develops the procedure to draw from an arbitrary matrix Student distribution.

algorithm d.21: random number generator for the matrix Student distribution

1. calculate any matrix G such that $G G^{\prime}=\Sigma$, and any matrix H such that $H H^{\prime}=\Omega$. In practice, G and H are often chosen to be the Cholesky factors of Σ and Ω.
2. draw a random matrix Z from $Z \sim M T\left(0, I_{n}, I_{m}, v\right)$.
3. calculate $X=M+G Z H^{\prime}$.

Then from property d.14, X is a random draw from $X \sim M T(M, \Sigma, \Omega, v)$.

Appendix: details of the derivations for the matrix Student distribution

The main reference for the matrix Student definition is Gupta and Nagar (2000), chapter 4. These authors provide the following definition for the density of the matrix Student definition:

The $n \times m$ random matrix X is said to have a matrix variate t-distribution with parameters M, Σ, Ω and v if its p.d.f is given by:
$f(X \mid M, \Sigma, \Omega, v)=\frac{\Gamma_{n}\left(\frac{v+n+m-1}{2}\right)}{\Gamma_{n}\left(\frac{v+n-1}{2}\right)} \pi^{-n m / 2}|\Omega|^{-n / 2}|\Sigma|^{-m / 2}\left|I_{m}+\Omega^{-1}(X-M)^{\prime} \Sigma^{-1}(X-M)\right|^{-(v+n+m-1) / 2}$
The are two main shortcomings associated with this definition. First, it is not consistent with the standard definitions of the multivariate and univariate Student definitions. That is, setting the column dimension m to 1 will not produce the multivariate Student density given in Table d.12, and reducing both the column dimension m and the row dimension n to 1 will not produce the univariate Student density given in Table d.11. Second, the distribution will not properly converge to its normal counterpart. Indeed, in the limiting case where the degrees of freedom v tend to infinity, the Student distributions (univariate and multivariate) converge to a normal distribution. That is, as $v \rightarrow \infty$, one has $T(\mu, \sigma, \mu) \rightarrow N(\mu, \sigma)$ and $T(\mu, \Sigma, \mu) \rightarrow$ $N(\mu, \Sigma)$. One would then also expect that $v \rightarrow \infty$ implies $M T(M, \Sigma, \Omega, \mu) \rightarrow M N(M, \Sigma, \Omega)$, but with the definition provided by Gupta and Nagar (2000) this is not the case due to improper formulation of the degrees of freedom.

For these reasons, this manual substitutes the following formulation for the density:
$f(X \mid M, \Sigma, \Omega, v)=\frac{\Gamma_{n}\left(\frac{v+n+m-1}{2}\right)}{\Gamma_{n}\left(\frac{v+n-1}{2}\right)}(v \pi)^{-n m / 2}|\Omega|^{-n / 2}|\Sigma|^{-m / 2}\left|I_{m}+\frac{1}{v} \Omega^{-1}(X-M)^{\prime} \Sigma^{-1}(X-M)\right|^{-(v+n+m-1) / 2}$
Unlike the formulation of Gupta and Nagar (2000), the above formulation is consistent with the other classes of Student distributions, and it does converge properly to the matrix normal distribution when $v \rightarrow \infty$. However it is not a standard formulation of the distribution and its properties have not been studied extensively. By contrast, Gupta and Nagar (2000) provide a thorough treatment of the distribution under their formulation. Fortunately, it is trivial to create an equivalence between the two definitions, by noting the following fact:

$$
\begin{aligned}
f(X \mid M, \Sigma, \Omega, v) & =\frac{\Gamma_{n}\left(\frac{v+n+m-1}{}\right)}{\Gamma_{n}\left(\frac{v+n-1}{2}\right)}(v \pi)^{-n m / 2}|\Omega|^{-n / 2}|\Sigma|^{-m / 2}\left|I_{m}+\frac{1}{v} \Omega^{-1}(X-M)^{\prime} \Sigma^{-1}(X-M)\right|^{-(v+n+m-1) / 2} \\
& =\frac{\Gamma_{n}\left(\frac{v+n+m-1}{2}\right)}{\Gamma_{n}\left(\frac{v+n-1}{2}\right)} \pi^{-n m / 2}|v \Omega|^{-n / 2}|\Sigma|^{-m / 2}\left|I_{m}+(v \Omega)^{-1}(X-M)^{\prime} \Sigma^{-1}(X-M)\right|^{-(v+n+m-1) / 2}
\end{aligned}
$$

(using properties m .11 and m.14)

$$
=\frac{\Gamma_{n}\left(\frac{v+n+m-1}{2}\right)}{\Gamma_{n}\left(\frac{v+n-1}{2}\right)} \pi^{-n m / 2}|\tilde{\Omega}|^{-n / 2}|\Sigma|^{-m / 2}\left|I_{m}+\tilde{\Omega}^{-1}(X-M)^{\prime} \Sigma^{-1}(X-M)\right|^{-(v+n+m-1) / 2}
$$

defining $\tilde{\Omega}=v \Omega$
It can then be seen that the formulation adopted in this manual is equivalent to the matrix Student distribution of Gupta and Nagar (2000) parameterised as $f(X \mid M, \Sigma, \tilde{\Omega}, v)$.

Following, all the properties developed in Gupta and Nagar (2000) apply to the present definition after a trivial adjustment in the definition of the parameters. For instance, Theorem 4.3.1 in Gupta and Nagar (2000) states:
$\operatorname{Var}(\operatorname{vec}(X))=\frac{1}{n-2}(\Omega \otimes \Sigma)$
Using $\tilde{\Omega}$ in place of Ω, one obtains that for the definition used in this manual:
$\operatorname{Var}(\operatorname{vec}(X))=\frac{1}{v-2}(\tilde{\Omega} \otimes \Sigma)=\frac{1}{v-2}(v \Omega \otimes \Sigma)=\frac{v}{v-2}(\Omega \otimes \Sigma) \quad$ ()using property m.41)
Any other property can be derived in a similar fashion.

d.14. Truncated normal

Type:	continuous
Notation:	$x \sim \bar{N}(\mu, \sigma, a, b)$
Parameters:	μ (location, scalar) σ (scale, scalar with $\sigma>0$) a (lower bound, scalar) b (upper bound, scalar with $b \geq a$)
Support:	$x \in[a, b]$
pdf:	$f(x \mid \mu, \sigma, a, b)=(\Phi(\beta)-\Phi(\alpha))^{-1}(2 \pi \sigma)^{-1 / 2} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma}\right) \mathbb{1}(a \leq x \leq b)$ $\Phi(x)$ is the cumulative distribution function of the standard normal distribution $\alpha=(a-\mu) / \sqrt{\sigma} \quad \beta=(b-\mu) / \sqrt{\sigma}$
Kernel:	$f(x \mid \mu, \sigma) \propto \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma}\right) \mathbb{1}(a \leq x \leq b)$
Normalizing constant:	$c=(\Phi(\beta)-\Phi(\alpha))^{-1}(2 \pi \sigma)^{-1 / 2}$
Mean:	$\begin{aligned} & \mu-\sqrt{\sigma} \frac{\phi(\beta)-\phi(\alpha)}{\Phi(\beta)-\Phi(\alpha)} \\ & \phi(x) \text { is the probability density function of the standard normal distribution } \end{aligned}$
Variance:	$\sigma\left(1-\frac{\beta \phi(\beta)-\alpha \phi(\alpha)}{\Phi(\beta)-\Phi(\alpha)}-\left[\frac{\phi(\beta)-\phi(\alpha)}{\Phi(\beta)-\Phi(\alpha)}\right]^{2}\right)$
Median:	$\mu+\sqrt{\sigma} \Phi^{-1}\left(\frac{\Phi(\alpha)+\Phi(\beta)}{2}\right)$
Mode:	a if $\mu<a, \mu$ if $a \leq x \leq b, b$ if $\mu>b$
Diffuse distribution:	-

Related distributions: \quad Normal: if $a=-\infty$ and $b=\infty$, then $x \sim N(\mu, \sigma)$

Table d.14: Summary of the truncated normal distribution

As the name indicates, the truncated normal distribution is similar to the normal distribution except that its support is truncated. This can be useful to model real life phenomena that roughly follow a normal distribution, but over a finite support. For instance, to model the probability that a fliiped coin yields "heads", one may want to use a normal distribution centered at 0.5 , but with a truncation over the $[0,1]$ interval.

The truncated normal distribution is defined by 4 parameters. The lower bound a and the upper bound b define the limits of the support. By playing over these parameters, one can handle a wide variety of shapes and turn the truncated normal distribution into a very flexible device. This is illustrated in Figure d.14.

Figure d.14: Different shapes of the truncated normal distribution

Unlike the normal distribution, the parameters μ and σ do not represent the mean and variance of the truncated normal distribution. The truncation acts as a disturbances that shifts these parameters by an amount determined by the parameters a and b.

There exist many different algorithms to generate pseudo-random numbers from the truncated normal distribution. Their efficiency usually depends on where the truncation is defined, and thus which part of the normal distribution the algorithm must sample from (the centre or the tails). The algorithm proposed here is due to Robert (1995). It is quite efficient, whatever the way the truncation is applied.
algorithm d.22: random number generator for the truncated normal distribution

1. draw w from $w \sim U(a, b)$.
2. compute:

$$
\begin{array}{ll}
z=\exp \left(-w^{2} / 2\right) & \text { if } 0 \in[a, b] \\
z=\exp \left(\left(b^{2}-w^{2}\right) / 2\right) & \text { if } b<0 \\
z=\exp \left(\left(a^{2}-w^{2}\right) / 2\right) & \text { if } a>0
\end{array}
$$

3. draw u from $u \sim U(0,1)$, and set $x=w$ if $u<z$; otherwise return to step 1 .

Then x is a random draw from $x \sim \bar{N}(0,1, a, b)$.
To draw from an arbitrary distribution $\bar{N}(\mu, \sigma, a, b)$, the following algorithm can be used.
algorithm d.23: random number generator for the truncated normal distribution

1. define $\alpha=(a-\mu) / \sqrt{\sigma}$ and $\beta=(b-\mu) / \sqrt{\sigma}$.
2. draw z from $z \sim \bar{N}(0,1, \alpha, \beta)$.
3. set $x=\mu+\sqrt{\sigma} z$.

Then x is a random draw from $x \sim \bar{N}(\mu, \sigma, a, b)$.

d.15. Gamma

Type:	continuous
Notation:	$x \sim G(a, b)$
Parameters:	$\begin{aligned} & a \text { (shape, scalar with } a>0 \text {) } \\ & b \text { (scale, scalar with } b>0 \text {) } \end{aligned}$
Support:	$x \in[0, \infty)$
pdf:	$f(x \mid a, b)=\frac{b^{-a}}{\Gamma(a)} x^{a-1} \exp \left(-\frac{x}{b}\right)$ $\Gamma(z)$ is the Gamma function, with $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$
Kernel:	$f(x \mid a, b) \propto x^{a-1} \exp \left(-\frac{x}{b}\right)$
Normalizing constant:	$c=\frac{b^{-a}}{\Gamma(a)}$
Mean:	$a b$
Variance:	$a b^{2}$
Median:	$\approx a b \frac{3 a-0.8}{3 a+0.2}$
Mode:	$(a-1) b$ for $a \geq 1$
Diffuse distribution:	set $a \rightarrow 0$ and $b \rightarrow \infty$ (proper distribution) or set $f(x \mid a, b) \propto \frac{1}{x}$ (improper distribution)
Related distributions:	Exponential: if $x \sim G(1,1 / \lambda)$, then $x \sim \operatorname{Exp}(\lambda)$ Chi-squared: if $x \sim G(v / 2,2)$, then $x \sim \chi^{2}(v)$ Inverse gamma: if $x \sim G(a, b)$, then $1 / x \sim I G(a, 1 / b)$ Normal: if $x \sim G(a, b)$, and $a \rightarrow \infty$, then approximately $x \sim N\left(a b, a b^{2}\right)$

Table d.15: Summary of the gamma distribution

The gamma distribution takes only positive values. In this respect it can be used to model any random event resulting in positive quantities, which gives it a very wide range of applications. It can be used for instance to model physical quantities (the amount of rainfall in a given country over a year), time durations (the amount of time before a factory machine defects), amounts of money (the amount of insurance claims after a natural disaster), and so on.

The distribution is defined by two parameters: the shape parameter a, and the scale parameter b. The shape parameter a determines the overall shape of the distribution. Smaller values of a increase positive skewness, attributing more probability to values around the origin and less weight to values further away. As a gets larger, the distribution gets more and more bell-shaped and symmetric. This is depicted in Figure d.15:

Figure d.15: Impact of the shape parameter a on the gamma distribution (scale $b=1$)
The scale parameter b on the other hand represents the overall scale of the function. Smaller values of b squeeze the distribution while larger values of b stretch it, without affecting the shape of the distribution. This is illustrated in Figure d.16:

Figure d.16: Impact of the scale parameter b on the gamma distribution (shape $a=10$)
A useful consequence of the effect of the scale parameter is the following property.
property d.18: let x be a random variable with: $x \sim G(a, b)$, and let $c>0$ be some scalar. Then: $c x \sim G(a, c b)$.

Also, combining the effects of the two parameters a and b, it is easy to generate a gamma distribution with any desired pair of values for the mean and variance. This is stated in the following property:
property d.19: let x be a random variable with: $x \sim G(a, b)$. Let μ and σ respectively denote any desired mean and variance for the distribution (with $\mu>0$ and $\sigma>0$). Then these values can be obtained by defining:
$a=\frac{\mu^{2}}{\sigma} \quad$ and $\quad b=\frac{\sigma}{\mu}$.

The gamma distribution is related to a number of other distributions that appear either as limiting cases or as special cases of the gamma distribution. For instance, for very large values of a the gamma distribution approximates the normal distribution. Other well-known distributions appear as special cases of the gamma. The exponential distribution with rate λ is a gamma distribution with $a=1$ and $b=\frac{1}{\lambda}$, while the Chi-squared distribution with degrees of freedom v is a gamma distribution with $a=\frac{v}{2}$ and $b=2$. Because these distributions arise a special cases of the gamma distribution, their properties can be directly derived from those of the gamma distribution.

There exist a number of algorithms to generate pseudo-random numbers from the Gamma distribution. The following algorithm is due to Marsaglia and Tsang (2000a). It is widely used for its efficiency and simplicity.

algorithm d.24: random number generator for the gamma distribution ($a \geq 1$)

1. set $d=a-1 / 3$ and $c=1 / \sqrt{9 d}$.
2. generate $x \sim N(0,1)$.
3. generate $v=1+c x$.
4. if $v>0$, set $v=v^{3}$ and generate $u \sim U(0,1)$; otherwise go back to 2 .
5. if $u<1-0.0331 x^{4}$, set $y=d v$; then $y \sim G(a, 1)$.
6. else, if $\log (u)<0.5 x^{2}+d(1-v+\log (v))$, set $y=d v$; then $y \sim G(a, 1)$.
7. else, go back to 2 .

The algorithm only works whenever $a \geq 1$. If $a<1$, Marsaglia and Tsang (2000a) propose a simple transformation.
algorithm d.25: random number generator for the gamma distribution ($a<1, b=1$)

1. generate a random number z from $z \sim G(a+1,1)$, using algorithm d.24.
2. generate $u \sim U(0,1)$.
3. define $y=z u^{1 / a}$; then $y \sim G(a, 1)$.

Finally, to obtain a random number from a gamma distribution with arbitrary b value, the following algorithm is used.
algorithm d.26: random number generator for the gamma distribution (a, b)

1. generate a random number z from $z \sim G(a, 1)$.
2. set $x=b y$.

Then from property d.18, $x \sim G(a, b)$.

d.16. Wishart

Type:	continuous
Notation:	$X \sim W(v, S)$
Parameters:	v (degrees of freedom, scalar with $v \geq n$) S ($n \times n$ scale matrix, symmetric and positive definite)
Support:	$X \in S_{++}^{n}$, the set of $n \times n$ positive definite matrices
pdf:	$f(X \mid v, S)=\frac{2^{-v n / 2}}{\Gamma_{n}\left(\frac{v}{2}\right)}\|S\|^{-v / 2}\|X\|^{(v-n-1) / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left\{X S^{-1}\right\}\right)$
Kernel:	$f(X \mid v, S) \propto\|X\|^{(v-n-1) / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left\{X S^{-1}\right\}\right)$
Normalizing constant:	$c=\frac{2^{-v n / 2}}{\Gamma_{n}\left(\frac{v}{2}\right)}\|S\|^{-v / 2}$
Mean:	$v S$
Variance:	$\operatorname{Var}\left(x_{i j}\right)=v\left(s_{i j}^{2}+s_{i i} s_{j j}\right)$
Median:	no simple analytical form
Mode:	$(v-n-1) S$ for $v \geq n+1$, else undefined
Diffuse distribution:	set $v=n$ and $S=s I_{n}$, with s a scalar such that $s \rightarrow \infty$ (proper distribution) or set $f(X \mid v, S) \propto\|X\|^{-(n+1) / 2}$ (improper distribution)
Related distributions:	Gamma: if $n=1$, then $X \sim G\left(\frac{v}{2}, \frac{S}{2}\right)$ Inverse Wishart: if $X \sim W(v, S)$, then $X^{-1} \sim I W\left(v, S^{-1}\right)$

Table d.16: Summary of the Wishart distribution

The Wishart distribution generalizes the Gamma distribution to $n \times n$ positive definite matrices. It is characterised by two parameters, the degrees of freedom v, and the scale S. The degrees of freedom v are comparable to the shape parameter a of the gamma distribution, and determine the overall shape of the density function. The interpretation of scale matrix S is similar to its scalar counterpart b in the gamma distribution: an increase in the values of S increase the spread of the distribution by stretching the density, while smaller values in S reduce it. Also, consistently with the gamma distribution which produces only positive scalar values, the Wishart distribution only produces positive definite matrices.

Because its support is the set of positive definite matrices with positive diagonal terms and unrestricted offdiagonal terms, typical applications of the Wishart distribution consist in the analysis of the distribution of variance-covariance matrices.

When the degrees of freedom v is integer, it is possible to define the Wishart distribution directly as follows.
property d.20: let A be a $n \times v$ matrix of independently drawn standard normal random numbers: $a_{i j} \sim N(0,1)$. Let $X=A A^{\prime}$. Then: $X \sim W\left(v, I_{n}\right)$.

The Wishart distribution has the following affine property:
property d.21: let X be a $n \times n$ matrix with: $X \sim W(v, S)$. Let A be a matrix of maximum rank n such that $A X A^{\prime}$ is defined. Then: $A X A^{\prime} \sim W\left(v, A S A^{\prime}\right)$.
the following algorithms introduce different procedures to generate pseudo random numbers from the Wishart distribution. When the degrees of freedom v is integer, a first option consists in using brute strength, using property d .20 as a direct definition of a Wishart draw:
algorithm d.27: random number generator for the Wishart distribution, v integer

1. generate a $n \times v$ matrix A of independent standard normal random numbers: $a_{i j} \sim N(0,1)$.
2. set $Z=A A^{\prime}$; then from property d.20, $Z \sim W\left(v, I_{n}\right)$.
3. calculate any matrix G such that $G G^{\prime}=S$. In practice, G is often chosen to be the Cholesky factor of S.
4. set $X=G Z G^{\prime}$; then from property d.21, $Z \sim W(v, S)$.

This algorithm can only be used for integer degrees of freedom. It also becomes slow whenever v is integer but large. In this case, one has to rely on alternative methods. The following algortihm is due to Bartlett (1934). It is known as the Bartlett decomposition of the Wishart distribution.

algorithm d.28: random number generator for the general Wishart distribution

1. initiate the matrix A as a $n \times n$ matrix of zeros.
2. diagonal terms: for $i=1,2, \ldots, n$, generate $a_{i i}=\sqrt{z}$, with $z \sim \chi^{2}(v+1-i)$.
3. off-diagonal terms: for $i=1,2, \ldots, n$ and $j<i$, generate $a_{i j}$ from $a_{i j} \sim N(0,1)$.
4. set $Z=A A^{\prime} ;$ then $Z \sim W\left(v, I_{n}\right)$.
5. calculate any matrix G such that $G G^{\prime}=S$. In practice, G is often chosen to be the Cholesky factor of S.
6. set $X=G Z G^{\prime}$; then from property d.21, $Z \sim W(v, S)$.

d.17. Inverse gamma

Type:	continuous
Notation:	$x \sim I G(a, b)$
Parameters:	a (shape, scalar with $a>0$) b (scale, scalar with $b>0$)
Support:	$x \in[0, \infty)$
pdf:	$f(x \mid a, b)=\frac{b^{a}}{\Gamma(a)} x^{-a-1} \exp \left(-\frac{b}{x}\right)$ $\Gamma(z)$ is the Gamma function, with $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$
Kernel:	$f(x \mid a, b) \propto x^{-a-1} \exp \left(-\frac{b}{x}\right)$
Normalizing constant:	$c=\frac{b^{a}}{\Gamma(a)}$
Mean:	$\frac{b}{a-1}$ for $a>1$
Variance:	$\frac{b^{2}}{(a-1)^{2}(a-2)} \text { for } a>2$
Median:	$\approx \frac{b(3 a+0.2)}{a(3 a-0.8)}$
Mode:	$\frac{b}{a+1}$
Diffuse distribution:	set $a \rightarrow 0$ and $b \rightarrow 0$ (proper distribution) or set $f(x \mid a, b) \propto \frac{1}{x}$ (improper distribution)
Related distributions:	Gamma: if $x \sim I G(a, b)$, then $1 / x \sim G(a, 1 / b)$

Table d.17: Summary of the inverse gamma distribution

The inverse gamma distribution can be directly defined as the distribution that obtains from the reciprocal of the gamma distribution.
property d.22: let x be a random variable with: $x \sim G(a, b)$. Then: $\frac{1}{x} \sim \operatorname{IG}\left(a, \frac{1}{b}\right)$.
Similarly to the gamma distribution, the support of the inverse gamma distribution consists in the set of positive real numbers. The shape parameter a also determines the overall shape of the distribution. As a increases, the distribution concentrates higher probabilities on small values. This is the converse of the regular gamma distribution which attributes more weight to small values when a decreases, and this results directly from the inverse gamma being the reciprocal of the gamma distribution. This is illustrated by Figure d.17:

Figure d.17: Impact of the shape parameter a on the inverse gamma distribution (scale $b=1$)

The second parameter of the distribution, the scale parameter b, determines the overall spread of the function. Its behaviour is similar to that of the regular gamma distribution: smaller values of b squeeze the distribution, while larger values stretch it, without affecting the shape of the distribution. This is illustrated by Figure d.18:

Figure d.18: Impact of the scale parameter \boldsymbol{b} on the inverse gamma distribution (shape $\boldsymbol{a}=3$)

Similarly to the gamma distribution, it is possible to play on the impact of the shape and scale parameters a and b to implement any desired pair of values for the mean and variance of the distribution.
property d.23: let x be a random variable with: $x \sim I G(a, b)$. Let μ and σ respectively denote any desired mean and variance for the distribution (with $\mu>0$ and $\sigma>0$). Then these values can be obtained by defining:
$a=\frac{\mu^{2}}{\sigma}+2 \quad$ and $\quad b=\mu\left(\frac{\mu^{2}}{\sigma}+1\right)$.

The following algorithm introduces the procedures to generate pseudo random numbers from the inverse gamma distribution.

algorithm d.29: random number generator for the inverse gamma distribution

1. draw a random number z from $z \sim G\left(a, \frac{1}{b}\right)$.
2. set $x=\frac{1}{2}$.

Then from property d. $22, x \sim I G(a, b)$.

d.18. Inverse Wishart

Type:	continuous
Notation:	$X \sim I W(v, S)$
Parameters:	v (degrees of freedom, scalar with $v \geq n$) S ($n \times n$ scale matrix, symmetric and positive definite)
Support:	$X \in S_{++}^{n}$, the set of $n \times n$ positive definite matrices
pdf:	$f(X \mid v, S)=\frac{2^{-v n / 2}}{\Gamma_{n}\left(\frac{v}{2}\right)}\|S\|^{v / 2}\|X\|^{-(v+n+1) / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left\{X^{-1} S\right\}\right)$
Kernel:	$f(X \mid v, S) \propto\|X\|^{-(v+n+1) / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left\{X^{-1} S\right\}\right)$
Normalizing constant:	$c=\frac{2^{-v n / 2}}{\Gamma_{n}\left(\frac{v}{2}\right)}\|S\|^{v / 2}$
Mean:	$\frac{S}{v-n-1} \quad v>n+1$
Variance:	$\operatorname{Var}\left(x_{i j}\right)=\frac{(v-n+1) s_{i j}^{2}+(v-n-1) s_{s i s} s_{j j}}{(v-n)(v-n-1)^{2}(v-n-3)} \quad v>n+3$
Median:	no simple analytical form
Mode:	$\frac{S}{v+n+1}$
Diffuse distribution:	set $v=n$ and $S=s I_{n}$, with s a scalar such that $s \rightarrow 0$ (proper distribution) or set $f(X \mid v, S) \propto\|X\|^{-(n+1) / 2}$ (improper distribution)
Related distributions:	Inverse gamma: if $n=1$, then $X \sim \operatorname{IG}\left(\frac{v}{2}, \frac{S}{2}\right)$ Wishart: if $X \sim I W(v, S)$, then $X^{-1} \sim W\left(v, S^{-1}\right)$

Table d.18: Summary of the Inverse Wishart distribution

The inverse Wishart generalises the inverse gamma distribution to $n \times n$ positive definite matrices, much the same way the Wishart distribution generalises the gamma distribution. The relation linking the inverse Wishart to the Wishart distribution is similar to that relating the gamma to the inverse gamma: the inverse Wishart is the distribution that obtains when taking the inverse of a Wishart distribution.
property d.24: let X be a random variable with: $X \sim W(v, S)$. Then: $X^{-1} \sim I W\left(v, S^{-1}\right)$.
The distribution is characterised by two parameters: the degrees of freedom v, and the scale matrix S. The degrees of freedom v represent the overall shape of the distribution, while the scale matrix S on the other hand determines the spread of the distribution: small values of S squeeze the distribution, while larger values stretch it.

There also exists an affine property for the inverse Wishart distribution.
property d.25: let X be a $n \times n$ matrix with: $X \sim I W(v, S)$. Let A be a matrix of maximum rank n such that $A X A^{\prime}$ is defined. Then: $A X A^{\prime} \sim I W\left(v, A S A^{\prime}\right)$.

The following algorithms introduce the procedures to generate pseudo random numbers from the inverse Wishart distribution, making use of the definition of the inverse Wishart distribution as the reciprocal of the Wishart distribution. The first approach applies to integer degrees of freedom, using the brute strength strategy.
algorithm d.30: random number generator for the inverse Wishart distribution, v integer

1. generate a $n \times v$ matrix A of independent standard normal random numbers: $a_{i j} \sim N(0,1)$.
2. set $Z=\left(A A^{\prime}\right)^{-1}$; then from property d. $24, Z \sim I W\left(v, I_{n}\right)$.
3. calculate any matrix G such that $G G^{\prime}=S$. In practice, G is often chosen to be the Cholesky factor of S.
4. set $X=G Z G^{\prime}$; then from property d.25, $Z \sim I W(v, S)$.

When the degrees of freedom v is large or not integer, one switches instead to the Bartlett decomposition.

algorithm d.31: random number generator for the general inverse Wishart distribution

1. initiate the matrix A as a $n \times n$ matrix of zeros.
2. diagonal terms: for $i=1,2, \ldots, n$, generate $a_{i i}=\sqrt{z}$, with $z \sim \chi^{2}(v+1-i)$.
3. off-diagonal terms: for $i=1,2, \ldots, n$ and $j<i$, generate $a_{i j}$ from $a_{i j} \sim N(0,1)$.
4. set $Z=\left(A A^{\prime}\right)^{-1}$; then $Z \sim I W\left(v, I_{n}\right)$.
5. calculate any matrix G such that $G G^{\prime}=S$. In practice, G is often chosen to be the Cholesky factor of S.
6. set $X=G Z G^{\prime}$; then from property d.25, $Z \sim I W(v, S)$.

d.19. Beta

Type:	continuous
Notation:	$x \sim \operatorname{Beta}(a, b)$
Parameters:	a (shape, scalar with $a>0$) b (shape, scalar with $b>0$)
Support:	$x \in[0,1]$
pdf:	$f(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}$ $B(z, w)$ is the Beta function, with $B(z, w)=\frac{\Gamma(z) \Gamma(w)}{\Gamma(z+w)}$
Kernel:	$f(x \mid a, b) \propto x^{a-1}(1-x)^{b-1}$
Normalizing constant:	$c=\frac{1}{B(a, b)}$
Mean:	$\frac{a}{a+b}$
Variance:	$\frac{a b}{(a+b)^{2}(a+b+1)}$
Median:	$\approx \frac{a-1 / 3}{a+b-2 / 3} \text { for } a, b>1$
Mode:	$\frac{a-1}{a+b-2}$ for $a, b>1$
Diffuse distribution:	set $a \rightarrow 0$ and $b \rightarrow 0$ (proper distribution)
Related distributions:	Uniform: if $x \sim \operatorname{Beta}(1,1)$, then $x \sim U(0,1)$

Table d.19: Summary of the Beta distribution

The Beta distribution is a continuous distribution taking values over the closed interval $[0,1]$. In this respect, it constitutes a natural candidate for any model representing probabilities or percentages. Typical applications include the probability of success for binary experiments (e.g. probability of obtaining "heads" at a coin toss), and the estimation of percentages (e.g. percentage of students who will pass the next examination).

The distribution is defined by two shape parameters a and b. The shape parameter a determines the behaviour of the distribution on the left, and the shape parameter b determines its behaviour on the right. Values of a or b below 1 curve the associated distribution tail upward, while values above 1 curve it downward. Values of 1 represent the neutral case, and when both a and b take a unit value, the Beta distribution degenerates into a uniform distribution. These features are illustrated by Figures d. 19 and d.20:

Figure d.19: Impact of the shape parameter a on the left tail (shape $b=1$)

Figure d.20: Impact of the shape parameter b on the right tail (shape $a=1$)

By playing on the two parameters a and b, a wide variety of shapes is available for the distribution. When $a=b$, the distribution is symmetric, while otherwise it is skewed. It is skewed to the left for $a<b$, and skewed to the right for $a>b$, as illustrated by Figure d.21:

Figure d.21: Combinations of shapes a and b on the distribution

Playing on the parameters a and b, it is possible to generate a Beta distribution satisfying a pair of desired values for the mean and variance, if these values are compatible with the distribution. This is stated in the following property:
property d.26: let x be a random variable with: $x \sim \operatorname{Beta}(a, b)$. Let μ and σ respectively denote a pair of desired values for the distribution mean and variance (with $0<\mu<1$ and $0<\sigma<0.25$). If this pair of values is compatible with the distribution, it can be obtained by defining:
$a=\frac{\bar{\mu}-\sigma(1+\bar{\mu})^{2}}{\sigma(1+\bar{\mu})^{3}} \quad$ and $\quad b=a \bar{\mu} \quad, \quad \bar{\mu} \equiv \frac{1-\mu}{\mu}$
the following algorithm introduces the procedure to generate pseudo random numbers from the Beta distribution. The algorithm is standard, its motivation can be found for instance in Forbes et al. (2011).

algorithm d.32: random number generator for the Beta distribution

1. generate y from $y \sim G(a, 1)$.
2. generate z from $z \sim G(b, 1)$.
3. set $x=\frac{y}{y+z}$.

Then $x \sim \operatorname{Beta}(a, b)$.

d.20. Dirichlet

Type:	continuous
Notation:	$x \sim D\left(a_{1}, \ldots, a_{k}\right)$
Parameters:	$a_{1}, \ldots, a_{n}\left(\right.$ concentration, scalars with $\left.a_{i}>0, i=1, \ldots, n\right)$
Support:	$x_{1}, \ldots, x_{n} \in[0,1]$, with $\sum_{i=1}^{n} x_{i}=1$
pdf:	$f\left(x_{1}, \ldots, x_{n} \mid a_{1}, \ldots, a_{n}\right)=\frac{1}{B\left(a_{1}, \ldots, a_{n}\right)} \prod_{i=1}^{n} x_{i}^{a_{i}-1}$
Kernel:	$f\left(z_{1}, \ldots, z_{n}\right)$ is the multivariate Beta function, with $B\left(z_{1}, \ldots, x_{n} \mid a_{1}, \ldots, z_{n}\right)=\frac{\Gamma\left(z_{1}\right) \ldots \Gamma\left(z_{k}\right)}{\Gamma\left(z_{1}+\ldots+z_{n}\right)}$
Normalizing constant:	$c=\frac{1}{B\left(a_{1}, \ldots, a_{n}\right)}$
Mean: $x_{i}^{a_{i}-1}$	
Variance:	$\mathbb{E}\left(x_{i}\right)=\frac{a_{i}}{a}$
Median:	$\operatorname{Var}\left(x_{i}\right)=\frac{a_{i}\left(a-a_{i}\right)}{a^{2}(a+1)}$
Mode:	$\approx \frac{a_{i}-1 / 3}{a-2 / 3}$, for $a_{i}>1$
Diffuse distribution:	$\frac{a_{i}-1}{a-n}$, for $a_{i}>1$
Retated distributions:	$\operatorname{Beta} a_{1}, \ldots, a_{n} \rightarrow 0$

Table d.20: Summary of the Dirichlet distribution

The Dirichlet distribution generalizes the Beta distribution to n-dimensional random vectors. While the Beta distribution can be interpreted as producing probabilities or percentages of binary experiments, the Dirichlet distribution expands this settings to experiments with n different outcomes or categories, labelled as x_{1}, \ldots, x_{n}. For instance, a typical application of the Beta consists in determining the probability of success for a coin flip, which represents a binary experiment with two outcomes: heads (success) and tails (failure). A Dirichlet expansion might consist in studying the outcome of a 6 -face die roll, determining the probabilities of obtaining any of the faces. The 6 faces then constitute the 6 categories considered by the distribution. Percentages can be treated in a similar way. While the Beta distribution can be used to determine the percentage of student that will pass or fail the next examination (binary experiment), the Dirichlet distribution can be used to determine the percentage of students corresponding to different grade categories (A, B, C, D, E and F, representing 6 categories).

The Dirichlet distribution is consistent with the Beta distribution. While the Beta deals with binary experiments and relies on a set of 2 shape parameters a and b, the Dirichlet considers n-categorical events with a set of n concentration parameters a_{1}, \ldots, a_{n}. The interpretation of these parameters is similar to that of the Beta distribution. Smaller values of a_{i} increase the concentration of probabilities on variable x_{i}, curving the distribution upward on the x_{i} axis at the expense of other variables. Larger values of a_{i} attribute less weight to probabilities on x_{i} and curve the distribution downward on the x_{i} axis. This is illustrated by Figure d.22:

Figure d.22: Impact of concentration a_{1} on the distribution ($n=3, a_{2}=a_{3}=2.5$)
The following algorithm introduces the procedure to generate pseudo random numbers from the Dirichlet distribution. Motivations can be found for instance in Forbes et al. (2011):
algorithm d.33: random number generator for the Dirichlet distribution

1. generate z_{1}, \ldots, z_{n} from $z_{i} \sim G\left(a_{i}, 1\right), i=1, \ldots, n$.
2. for $i=1, \ldots, n$, set $x_{i}=\frac{z_{i}}{z}$, with $z=\sum_{i=1}^{n} z_{i}$.

Then $x=\left(x_{1}, \ldots, x_{n}\right)$ is a random draw from $x \sim D\left(a_{1}, \ldots, a_{n}\right)$.

Bibliography

Bartlett, M. S. (1934). On the theory of statistical regression. Proceedings of the Royal Society of Edinburgh, pages 260-283.

Box, G. E. P. and Muller, M. E. (1958). A note on the generation of random normal deviates. The annals of mathematical statistics, 29(2).

Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. Addision-Wesley.
Dickey, J. M. (1967). Matricvariate generalizations of the multivariate t distribution and the inverted multivariate t distribution. Annals of Mathematical Statistics, 8:511-518.

Forbes, C., Evans, M., Hastings, N., and Peacock, B. (2011). Statitical distributions. John Wiley \& Sons, Inc., $4^{\text {th }}$ edition.

Gupta, A. K. and Nagar, D. K. (2000). Matrix variate distributions. Monographs and surveys in pure and applied mathematics. Chapman \& Hall/CRC.
Kemp, C. D. and Kemp, A. W. (1991). Poisson random variate generation. Journal of the Royal Statistical Society, 40(1):143-158.

Marsaglia, G. and Bray, T. A. (1964). A convenient method for generating normal variables. SIAM Review, 6(3):260-264.

Marsaglia, G. and Tsang, W. W. (2000a). A simple method for generating gamma variables. ACM Transactions on Mathematical Software, 26(3).

Marsaglia, G. and Tsang, W. W. (2000b). The ziggurat method for generating random variables. Journal of Statistical Software, 5(8).

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1):3-30.

Robert, C. P. (1995). Simulation of truncated normal variables. Statistics and Computing, (5):121-125.
Wichura, M. J. (1988). algorithm as 241: the percentage points of the normal distribution. Journal of the Royal Statistical Society, 37(3):477-484.

Subject index

adjoint of a matrix, 17
Cholesky factor, 22
closed interval, 8
column vector, 11
complement, 2
countable set, 4
determinant of a matrix, 17
diagonal matrix, 20
disjoint sets, 3
eigenvalue, 29
eigenvector, 29
empty set, 1
entry, 12
finite set, 4
full rank, 27
identity matrix, 16
infinite set, 4
integer numbers, 4
intersection, 2
inverse of a matrix, 16
irrational numbers, 4
Kronecker product, 26
lower triangular matrix, 21
main diagonal of a matrix, 20
matrix, 11
matrix addition, 12
matrix product, 14
matrix subtraction, 13
multiple intersection, 3
multiple union, 3
natural numbers, 3
negative definite matrix, 32
negative semi-definite matrix, 32
non-negative integers, 4
open interval, 8
partitioned matrix, 32
positive definite matrix, 21, 32
positive semi-definite matrix, 32
quadratic form, 31
rank of a matrix, 27
rational numbers, 4
real numbers, 4
row vector, 11
scalar, 11
scalar multiplication, 14
set, 1
singular matrix, 18
square matrix, 20
subset, 1
superset, 1
symmetric matrix, 21
trace of a matrix, 28
transpose of a matrix, 19
triangular factorisation, 22
uncountable set, 4
union, 2
universal set, 2
upper triangular matrix, 21
vectorization of a matrix, 28

