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CHAPTER S

Set theory

s.1 Elementary concepts

In mathematics, sets are used to describe groups of objects. Formally:

definition s.1: a set is a collection of elements.

The elements in question can be anything, but typically they are mathematical objects such as numbers or
symbols. To denote a set, it is customary to list its elements within curly brackets {}.

example s.1: the set A containing the numbers 1, 2 and 3 is denoted by A = {1,2,3}.

Sets can be defined in a more systematic way by describing their elements. This is done by using indiffer-
ently the notations | or : which stand for “such that”.

example s.2: the set containing the numbers that are smaller than 3 can be denoted by A = {x|x < 3} or
A = {x : x < 3}.

To indicate that some element x is a member of set A, one writes x ∈ A, which reads “x belongs to A”.
Conversely, to denote the fact that x is not a member of A, one writes x /∈ A.

example s.3: if A={1,2,3}, then 2 ∈ A, but 5 /∈ A.

Two fundamental concepts in set theory are that of subsets and supersets:

definition s.2: given two sets A and B, A is a subset of B, denoted by A⊆ B, if every member of A is
also a member of B. If A is a subset of B, then B is a superset of A.

For instance:

example s.4: let A = {2,4} and B = {1,2,3,4,5}. Then A⊆ B. A is a subset of B, and B is a superset of
A.

example s.5: let A = {x : x < 3}, the set of numbers smaller than 3, and let B = {x : x < 5}, the set of
numbers smaller than 5. Then A⊆ B. A is a subset of B, and B is a superset of A.

example s.6: let A = {1,2,3} and B = {1,2,3}, so that A = B. Then A⊆ B and B⊆ A. A and B are at the
same time subset and superset of each other. Thus, subsets and supersets include the case of equal sets.

There exist two sets of special interest, called the empty set and the universal set.

definition s.3: the empty set is the set that contains no element. It is denoted by ∅.

1



2 CHAPTER S. SET THEORY

At the other end of the spectrum, the universal set is defined as:

definition s.4: the universal set is the set that contains all possible elements, in a given context.

Any set we might consider is a subset of the universal set. The empty set and the universal sets are also
important for the definition of the notion of complement. The latter is defined as:

definition s.5: If A is some set, then the complement of A, denoted by Ac, is the set containing all the
elements of the universal set that are not in A. Formally, if A is some set, and X denotes the universal
set, then Ac = {x ∈ X : x /∈ A}.

For example:

example s.7: if we let the universal set be X = {1,2,3,4,5,6,7,8}, and A be the set A = {2,4,5} then the
complement of A is Ac = {1,3,6,7,8}.

example s.8: let A = {x : x < 3}, the set of numbers smaller than 3. Then if the universal set X is the set
of all numbers, Ac = {x : x≥ 3}, the set of numbers greater than or equal to 3.

In examples s.7 and s.8, the universal set was explicitly described. Most of the time however the universal
set is only implicit and used as an underlying element defining the complement of a set A as “everything
that is not in A”.

s.2 Unions and intersections

Operations on sets are realised through the concepts of unions and intersections. Set unions are defined as
follows:

definition s.6: let A and B be two sets; the union of A and B, denoted by A∪B, is the set of all elements
that are either in A or in B (or in both). Formally: A∪B = {x : x ∈ A or x ∈ B}.

For example:

example s.9: let A = {1,2,3} and B = {3,4,5}; then A∪B = {1,2,3,4,5}.

example s.10: let A = {x : 2 < x < 6}, the set of numbers comprised between 2 and 6, and let B = {x : 4 <
x < 8}, the set of numbers comprised between 4 and 8. Then A∪B = {x : 2 < x < 8}, the set of numbers
comprised between 2 and 8.

The counterpart of the concept of union is that intersection. Set intersection is defined as follows:

definition s.7: let A and B be two sets; the intersection of A and B, denoted by A∩B, is the set of all
elements that are both in A and in B. Formally: A∩B = {x : x ∈ A and x ∈ B}.

For example:

example s.11: let A = {1,2,3} and B = {3,4,5}; then A∩B = {3}.
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example s.12: let A = {x : 2 < x < 6}, the set of numbers comprised between 2 and 6, and let B = {x : 4 <
x < 8}, the set of numbers comprised between 4 and 8. Then A∩B = {x : 4 < x < 6}, the set of numbers
comprised between 4 and 6.

Two sets which have no elements in common are called disjoint sets:

definition s.8: two sets A and B are disjoint if they have no element in common, that is, if A∩B =∅.

For example:

example s.13: let A = {1,2,3} and B = {4,5,6}; then A∩B =∅, so A and B are disjoint.

Notations for multiple unions and intersections can be used to avoid cumbersome writing.

definition s.9: let A1,A2,A3, . . . ,An be some sets. Then the multiple union of those sets is denoted

by:
n⋃

i=1

Ai = A1∪A2∪A3∪ . . .∪An .

Also:

definition s.10: let A1,A2,A3, . . . ,An be some sets. Then the multiple intersection of those sets is

denoted by:
n⋂

i=1

Ai = A1∩A2∩A3∩ . . .∩An .

For example:

example s.14: let A1 = {1,2,3,4,5}, A2 = {2,3,4,5,6} and A3 = {3,4,5,6,7}; then:
3⋃

i=1

Ai = {1,2,3,4,5,6,7} and
3⋂

i=1

Ai = {3,4,5}.

example s.15: let A1 = {x : 2 < x < 6}, A2 = {x : 3 < x < 7} and A3 = {x : 4 < x < 8}; then:
3⋃

i=1

Ai = {x : 2 < x < 8} and
3⋂

i=1

Ai = {x : 4 < x < 6}.

s.3 Countable and uncountable sets

The notion of countability plays an important role in statistical theory, in particular when discussing
random variables. Indeed, it is countability which determines the nature of random variables, discrete
or continuous. Countable sets of outcomes produce discrete random variables, while uncountable sets of
outcome result in continuous random variables. Before discussing this concept formally, it is useful to
introduce some very famous sets.

definition s.11: the set of natural numbers, denoted by N, is the set of positive whole numbers (or
counting numbers). That is, N= {1,2,3, . . .} .

Some textbooks also include 0 in the natural numbers. Most commonly however 0 is excluded, and this
choice is retained here.
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A natural extension of the natural numbers is the set of integer numbers:

definition s.12: the set of integers, denoted by Z, is the set of all whole numbers, positive, negative
and zero. That is, Z= {. . . ,−3,−2,−1,0,1,2,3, . . .} .

The set of integers provides a convenient way to denote the set of natural numbers plus zero:

definition s.13: the set of non-negative integers, denoted by Z∗, is the set of all non-negative whole
numbers. That is, Z∗ = {0,1,2,3, . . .} .

It is clear that Z∗ = 0∪N, and thus represents only a shortcut notation. With the set of integers, it is
possible to define the set of rational numbers:

definition s.14: the set of rational numbers , denoted by Q, is the set of all numbers which can be
written as the quotient (or ratio) of two integers. That is, Q= { x

y : x ∈ Z, y ∈ Z, y 6= 0} .

It may seem at first that the set of rational numbers can describe any possible number. But this is not true:
certain numbers like

√
2 or π for instance cannot be written as the ratio of two integers, and are hence not

rational numbers. This leads to the following definition:

definition s.15: an irrational number is a number which cannot be written as the ratio of two integers.

Irrational numbers are important because they provide the final element required to define the set of real
numbers. Loosely speaking, one can see the set of real numbers as the set containing all numbers. The
formal definition goes as follows:

definition s.16: the set of real numbers, denoted by R, is the set of all rational and irrational numbers.

From the above definitions, it should be clear that the natural, integer, rational and real numbers represent
nested sets of numbers, namely: N⊆ Z⊆Q⊆ R.

As a preliminary to the incoming discussion on countability, it is also useful to introduce the notion of
finiteness:

definition s.17: a set A is finite if there exists some natural number n ∈ N such that the cardinality
(number of elements) of A is equal to n. A set which is not finite is infinite .

A trivial way to reformulate the above definition is to state that a set is finite if it contains a finite number
of elements. Otherwise, it is infinite. For example:

example s.16: the set A = {5,6,7} is finite, since its cardinality is 3 (it contains 3 elements); on the other
hand, N,Z,Q and R are examples of infinite sets.

It is now possible to introduce the notion of countability of a set.

definition s.18: a set A is countable if there exists a bijection from A to N (or some subset of N). A
set which is not countable is said to be uncountable .
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Let us clarify this definition. First, a bijection is a function such that to each value x of the domain cor-
responds a unique value f (x) of the codomain, and vice versa such that to each value y of the codomain
corresponds a unique value f−1(y) of the domain. Figure s.1 makes the point. The function displayed
on panel (a) is a bijection since for each possible value y of the codomain corresponds a unique value
x = f−1(y), and vice versa. The function displayed on panel (b) on the other hand is not a bijection since
for a given value y of the codomain correspond two possible values f−1(y) = x1 and x2.

 y

x=f (y)

(a) a bijective function

 y

 x
1
=f (y)  x

2
=f (y)

(b) a non-bijective function

Figure s.1: bijective and non-bijective functions

It is now possible to go back to the definition of a countable set. Simply speaking, it says that a set is
countable if its elements can be enumerated. In other words, a set A is countable if one can create a list of
its elements, and assign to each of these elements a unique position in this list (“1st element of the list”,
“2nd element of the list”, and so on).

The use of a bijective function simply represents a formal way to draw the list, the domain being the
elements of A, and the codomain being the position in the list (1,2,3 and so on, hence the set N for the
codomain). As the function is bijective, it guarantees that each element in the set is associated to a unique
position in the list, and vice versa that each position in the list corresponds to a single element in A. It
does not matter if the list is infinite. Infinite sets result in infinite lists, in which case the function spans
the whole of N. On the other hand, finite sets result in a finite list and hence span only some subset of N.

With this definition, it is possible to discuss the countability of N, Z, Q and R, starting with the set of
natural numbers N:

property s.1: the set of natural numbers N is countable.

proof : to prove the result, it must be possible to create a list of the elements in N, and assign to each of
these elements a unique position in this list. In the case of the natural numbers, this is quite trivial since it
amounts to creating a mapping from N to N. The resulting list is displayed in Table s.1:
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List of elements in N Position in the list
(domain of the injection: N) (codomain of the injection: N)

1 1
2 2
3 3
4 4
...

...

Table s.1: bijection for the countability of N

Next, establish the countability of the set of integers Z:

property s.2: the set of integer numbers Z is countable.

proof : again, to prove the result, one creates a list of the elements in Z and assign to each of these elements
a unique position in this list. This is hardly more complicated than in the case of the natural numbers N.
Zero must be included in the list, and because Z also include the negative whole numbers, the enumeration
must alternate between positive and negative values. The resulting list is displayed in Table s.2:

List of elements in Z Position in the list
(domain of the injection: Z) (codomain of the injection: N)

0 1
1 2
−1 3

2 4
−2 5

3 6
−3 7

...
...

Table s.2: bijection for the countability of Z

Next, consider the set of rational numbers Q:

property s.3: the set of rational numbers Q is countable.

proof : to prove the result, create a list of the elements in Q, and assign to each of these elements a unique
position in this list. This is a bit more complicated for Q than it is for N and Z. The strategy consists in
identifying all possible fractions a

b , with a,b ∈ N and then select those fractions in a systematic way to
ensure all rational numbers are covered in the process. To do so, the following table is used:
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1 2 3 4 5 . . .

1 1
1

1
2 −→

1
3

1
4 −→

1
5 . . .

↓ ↗ ↙ ↗ ↙

2 2
1

2
2

2
3

2
4

2
5 . . .

↙ ↗ ↙

3 3
1

3
2

3
3

3
4

3
5 . . .

↓ ↗ ↙

4 4
1

4
2

4
3

4
4

4
5 . . .

↙

5 5
1

5
2

5
3

5
4

5
5 . . .

...
...

...
...

...
...

Table s.3: ordered pairs (a,b) of natural numbers

It should be clear that this process records any possible positive rational number: a
b will be found in row a,

column b of the table. Following the arrow path then ensures that all the entries are covered at some point
of the enumeration. What remains to do to complete the list of rational numbers Q is to include the entry
0 = 0

1 , add the negative counterpart of each positive fraction, and get rid of the duplicates (for instance, 2
2

and 1
1 are the same number). This produces the following list of rational numbers:

List of elements in Q Position in the list
(domain of the injection: Q) (codomain of the injection: N)

0
1 1
1
1 2

−1
1 3
2
1 4

−2
1 5
1
2 6

−1
2 7
1
3 6

−1
3 7
3
1 8

−3
1 9
...

...

Table s.4: bijection for the countability of Q

Consider finally R, the set of real numbers. As stated previously, the real numbers extend the rational
numbers by integrating both rational and irrational numbers. It may seem intuitively that most numbers
can be written as rational numbers, so that irrational numbers represent an exception. In fact, the contrary
is true: most numbers cannot be written as rational numbers, and there are considerably more real numbers
than rational numbers. The real numbers are in fact so many that it is not possible to count them. This
establishes the next result:

property s.4: the set of real numbers R is uncountable.
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proof : the proof relies on the so-called Cantor diagonal argument. It proceeds by contradiction: it assumes
that R is countable, and then shows that this assumption cannot be true. So, suppose it is possible to draw
a list of all real numbers. Then the list of real numbers with integer part 0 would look like this:

List of elements in R Position in the list
(domain of the injection: R) (codomain of the injection: N)

0 . xxx111111x12x13x14 . . . 1
0 . x21xxx222222x23x24 . . . 2
0 . x31x32xxx333333x34 . . . 3
0 . x41x42x43xxx444444 . . . 4

...
...

Table s.5: bijection for the countability of R (assumption)

Now consider the real number y = 0.y1y2y3y4 . . . constructed in the following way: y1 is any digit except
x11, y2 is any digit except x22, and in general yn is any digit except xnn (the bold diagonal terms in Table
s.5). Then clearly y is not equal to any number in the list since it has at least one digit that differs with each
number. Therefore, the assumed list of real numbers cannot be complete, which results in a contradiction.

This concludes the discussion on the countability of the major sets of numbers. Some additional results
on countability are now introduced.

property s.5: let A be some finite set; then A is countable.

proof : because A is finite, it contains n elements, for some n ∈ N. Following, it is possible to associate to
each of the n elements in A a unique natural number between 1 and n. This defines a bijection from A to a
subset of N, hence A is countable.

Though finiteness implies countability, finite and countable are not equivalent notions. Many infinite sets
are countable, for instance N,Z and Q, as previously established. The next results discuss the countability
of subsets.

property s.6: let A be some countable set; if B ⊆ A, then B is countable. In other words, the subset of a
countable set is itself countable.

proof : only a sketch of the proof is provided. Because B is a subset of A, every element in B also lies in A.
Also, because A is countable, there exists a bijection from A to N. This means that for each element in A,
there exists a unique associated natural number. Then for each element of B, consider the corresponding
element in A, and the corresponding associated natural number from the bijection. Doing so, one defines
a bijection from B to a subset of N, hence B is countable.

To introduce the final result on subsets, it is necessary to define first the notions of closed and open
intervals:

definition s.19: let a and b be two real numbers; then the closed interval [a,b] is the set [a,b] = {x ∈
R : a≤ x≤ b}, and the open interval (a,b) is the set (a,b) = {x ∈ R : a < x < b}.

Roughly speaking, a closed interval is an interval which includes its endpoints, while an open interval
excludes them. Intervals need not be fully closed or open, yet. One can also find the half-open (or half-
closed) intervals [a,b) = {x ∈ R : a ≤ x < b} and (a,b] = {x ∈ R : a < x ≤ b}. The final result of this
chapter discusses the countability of intervals:

property s.7: let a and b be two real numbers with a < b; then the closed interval [a,b], the open interval
(a,b) and the half-open intervals [a,b) and (a,b] are uncountable.
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proof : the easiest way to prove the above result is to rely, again, on the Cantor diagonal argument. First,
one notes that for every interval [a,b],(a,b), [a,b) or (a,b] it is possible to define some subset (c,d) such
that all elements in (c,d) share the same integer part z and the same first n decimals d1,d2, . . . ,dn. In other
words, (c,d) = {x ∈R : x = z . d1d2 . . .dn < x < z . d1d2 . . .(dn +1)}. For instance, for the closed interval
[a,b] = {x ∈R : 2.34≤ x≤ 2.37}, it is possible to define (c,d) = {x ∈R : 2.35 < x < 2.36}, with integer
part z = 2, and decimal parts d1 = 3 and d2 = 5. The strategy then consists in using the Cantor diagonal
argument on the sub-interval (c,d). Assume hence that (c,d) is countable, so that it is possible to draw a
list of all real numbers on (c,d). This list would look like this:

List of elements in (c,d) Position in the list
(domain of the injection: (c,d)) (codomain of the injection: N)

z . d1d2 . . .dnxxx111(((nnn+++111)))x1(n+2)x1(n+3)x1(n+4) . . . 1
z . d1d2 . . .dnx2(n+1)xxx222(((nnn+++222)))x2(n+3)x2(n+4) . . . 2
z . d1d2 . . .dnx3(n+1)x3(n+2)xxx333(((nnn+++333)))x3(n+4) . . . 3
z . d1d2 . . .dnx4(n+1)x4(n+2)x4(n+3)xxx444(((nnn+++444))) . . . 4

...
...

Table s.6: bijection for the countability of (c,d) (assumption)

Now consider the real number y = z.d1d2 . . .dny(n+1)y(n+2)y(n+3) . . . constructed in the following way:
y(n+1) is any digit except x1(n+1), y(n+2) is any digit except x2(n+2), and in general y(n+i) is any digit
except xi(n+i) (the bold diagonal terms in Table s.6). Then clearly y is not equal to any number in the
list since it has at least one digit that differs with each number. Therefore, the assumed list of (c,d)
cannot be complete, which results in a contradiction. Hence (c,d) is uncountable, so that the intervals
[a,b],(a,b), [a,b) and (a,b] are also uncountable.
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CHAPTER M

Matrix algebra

m.1 Elementary concepts

At the basis of matrix algebra lies a class of objects called matrices. A matrix is defined as follows:

definition m.1: a matrix is a rectangular array of numbers or symbols.

For example:

example m.1:

Let: A =

 3 0 −2
−1 2 3

0 3 1

 B =


2 1
0 0
−1 4

7 3

 C =

(
−5 0 3

1 −3 0

)
A, B and C are examples of matrices.

It is conventional to use regular brackets () to wrap the elements of a matrix, but sometimes square brackets
[] and even curly brackets {} can also be used.

It is customary to describe a matrix by its dimension, namely its number of rows and columns. For a
matrix with m rows and n columns, one uses the notation “m×n”, which reads “m by n”.

example m.2:

Let: A =

 3 0 −2
−1 2 3

0 3 1

 B =


2 1
0 0
−1 4

7 3

 C =

(
−5 0 3

1 −3 0

)

A is a 3×4 matrix, B is a 4×2 matrix, while C is a 2×3 matrix.

It is useful to introduce some specific terminologies about matrix dimension.

definition m.2: a matrix of dimension m×1 is called a column vector ; a matrix of dimension 1×m
is called a row vector ; a matrix of dimension 1×1 is called a scalar .

As the name suggests, a column vector is a matrix made of a single column, while a row vector is a matrix
made of a single row. A scalar is simply an individual number, which is equivalent to a 1×1 matrix. By
convention, the word “vector” is often used as a shortcut to designate a column vector. On the other hand,
the full expression “row vector” is usually employed in order to avoid any ambiguity.

11
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example m.3:

Let: A =

(
−1 3 0

4 −2 6

)
b =

 1
−1

2

 c =
(
4 3 −2 0

)
d =

(
2
)
.

A is a matrix, b is a (column) vector, c is a row vector, and d is a scalar.

As can be seen from example m.3, it is customary to use capital blocks to denote matrices, and lower
blocks to denote vectors and scalars.

Sometimes, it is useful to designate specific elements in a matrix.

definition m.3: the (i, j) entry of a matrix is the number found in row i, column j of this matrix.

The convention to denote entries is to use the name of the matrix written in lower case, and associate to it
the index (i, j) of the entry as a subscript. For instance, if A is a matrix, then the entry (i, j) of A will be
written as ai j.

example m.4:

Let: A =

8 6 0 3
5 7 −4 0
9 3 −3 −5


Then a12 = 6, a22 = 7 and a34 =−5.

In general, it is possible to express a m×n matrix in terms of its entries as:

B =


b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn



m.2 Matrix operations: addition

Similarly to numbers, operations can be defined on matrices. The most basic of these operations is matrix
addition:

definition m.4: let A and B be two matrices of similar dimension m×n; then the matrix addition of
A and B is the m×n matrix A+B such that (a+b)i j = ai j +bi j. In other words:

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 +


b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

 =


a11 +b11 a12 +b12 . . . a1n +b1n

a21 +b21 a22 +b22 . . . a2n +b2n
...

...
. . .

...
am1 +bm1 am2 +bm2 . . . amn +bmn



Matrix addition exists only if the matrices involved are of similar dimension, that is, share the same
number of rows and columns. Otherwise, it is not defined.



M.3. MATRIX OPERATIONS: SUBTRACTION 13

example m.5:

Let: A =

(
2 3 0
−1 4 −3

)
B =

(
1 0 8
−2 3 1

)
C =

(
−3 4

7 −1

)
Then: A+B =

(
2 3 0
−1 4 −3

)
+

(
1 0 8
−2 3 1

)
=

(
2+1 3+0 0+8
−1−2 4+3 −3+1

)
=

(
3 3 8
−3 7 −2

)
On the other hand, the operations A+C and B+C are not defined since the matrix dimensions don’t agree.

Matrix addition has the following properties:

property m.1: let A and B be matrices such that A+B is defined; then A+B = B+A (commutative
property).

property m.2: let A, B and C be matrices such that A+B+C is defined; then (A+B)+C = A+(B+C)
(associative property).

m.3 Matrix operations: subtraction

Matrix subtraction is simply the counterpart of matrix addition.

definition m.5: let A and B be two matrices of similar dimension m×n; then the matrix subtraction
of A and B is the m×n matrix A−B such that (a−b)i j = ai j−bi j. In other words:

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

−


b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

=


a11−b11 a12−b12 . . . a1n−b1n

a21−b21 a22−b22 . . . a2n−b2n
...

...
. . .

...
am1−bm1 am2−bm2 . . . amn−bmn



Similarly to matrix addition, matrix subtraction exists only if the matrices involved are of similar dimen-
sion. Otherwise, it is not defined.

example m.6:

Let: A =

(
5 −2 1
−3 3 0

)
B =

(
0 7 4
4 1 2

)
C =

(
2 −1
5 1

)
Then: A−B =

(
5 −2 1
−3 3 0

)
−
(

0 7 4
4 1 2

)
=

(
5−0 −2−7 1−4
−3−4 3−1 0−2

)
=

(
5 −9 −3
−7 2 −2

)
On the other hand, the operations A−C and B−C are not defined since the matrix dimensions don’t agree.

m.4 Matrix operations: multiplication

Matrix multiplication constitutes the next step after matrix addition and matrix subtraction. The simplest
version of matrix multiplication is the scalar multiplication:
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definition m.6: let a be some scalar, and let B be some m×n matrix; then the scalar multiplication
aB is the m×n matrix such that (ab)i j = a×bi j. In other words:

a


b11 b12 . . . b1p

b21 b22 . . . b2p
...

...
. . .

...
bn1 bn2 . . . bnp

 =


ab11 ab12 . . . ab1n

ab21 ab22 . . . ab2n
...

...
. . .

...
abm1 abm2 . . . abmn



For instance:

example m.7:

Let: a = 3 B =

(
2 −1 −2
1 3 0

)
The scalar multiplication aB is given by:

aB =
(
3
)(2 −1 −2

1 3 0

)
=

(
3×2 3× (−1) 3× (−2)
3×1 3×3 3×0

)
=

(
6 −3 −6
3 9 0

)

Multiplication with the scalar multiplication works much like matrix addition or subtraction: the operation
is realised on pairwise elements of the two matrices. This simple logic only applies when the first matrix
is a scalar. Matrix multiplication in general is more complicated, and is defined as follows:

definition m.7: let A be some m×n matrix, and let B be some n× k matrix; then the matrix product

AB is the m× k matrix such that (ab)i j =
n

Σ
h=1

aihbh j. In other words:


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




b11 b12 . . . b1k
b21 b22 . . . b2k

...
...

. . .
...

bn1 bn2 . . . bnk

 =



n

Σ
h=1

a1hbh1

n

Σ
h=1

a1hbh2 . . .
n

Σ
h=1

a1hbhk
n

Σ
h=1

a2hbh1

n

Σ
h=1

a2hbh2 . . .
n

Σ
h=1

a2hbhk

...
...

. . .
...

n

Σ
h=1

amhbh1

n

Σ
h=1

amhbh2 . . .
n

Σ
h=1

amhbhk



The definition implies that for a matrix product AB to be defined, A must be m×n, and B must be n×k. In
other words, the number of columns of the first matrix must be equal to the number of rows of the second
matrix. Otherwise, the product is not defined.

example m.8:

Let: A =

(
−1 2 6

0 −2 1

)
B =

 4 −1
3 2
−2 4

 C =

(
−2 3

1 2

)
The matrix product AB is defined, since A has 3 columns and B has 3 rows. Similarly, the product BC is
defined, since B has 2 columns and C has 2 rows. The matrix product AC is not defined however, since A
has 3 columns while C has 2 rows.

When A is m×n and B is n× k, the product AB is well defined. In this case, the resulting matrix is n× k.
That is, the matrix resulting from the product AB has a number of rows equal to the number of rows of A,
and a number of columns equal to the number of columns of B.
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example m.9:

Let: A =

(
2 −2 3
1 0 −4

)
B =

 2
−1

5

.

A has 3 columns and B has 3 rows. Hence the product AB is defined. Since A has 2 rows and B has 1
column, the matrix resulting from the product AB will be of dimension 2×1.

The final step consists in computing the product itself. When the product AB is defined, the entry of row
i, column j of AB is obtained by calculating the product of row i of A with column j of B.

example m.10:

Let: A =

(
3 1 −1
3 −2 2

)
B =

0 1
4 −1
6 0


A has 3 columns and B has 3 rows, hence the product AB is defined. A has 2 rows and B has 2 columns,
hence the matrix resulting from the product AB is of dimension 2×2.

The entry of row 1, column 1 of the product AB is obtained by multiplying row 1 of matrix A with column

1 of matrix B: (ab)11 =
3

Σ
h=1

a1hbh1 = 3×0+1×4−1×6 =−2

Similarly, the entry of row 1, column 2 of the product AB is obtained by multiplying row 1 of matrix A

with column 2 of matrix B: (ab)12 =
3

Σ
h=1

a1hbh2 = 3×1+1× (−1)−1×0 = 2.

Continuing in a similar fashion for the two remaining entries, the complete product obtains as:

AB =

(
3 1 −1
3 −2 2

)0 1
4 −1
6 0

=

(
−2 2

4 5

)

Matrix product is not commutative: in general AB 6= BA. In fact, BA may not even be defined, even though
AB is.

A number of convenient properties apply to scalar multiplication and matrix products, and are now intro-
duced to conclude this section:

property m.3: let a be some scalar, and let B and C be matrices such that BC is defined.
Then a(BC) = (aB)C = B(aC) = (BC)a (associative property of scalar multiplication).

property m.4: let a be some scalar, and let B and C be matrices such that B+C is defined.
Then a(B+C) = aB+aC = Ba+Ca = (B+C)a (distributive property of scalar multiplication).

property m.5: let A, B and C be matrices such that ABC is defined.
Then ABC = (AB)C = A(BC) (associative property of matrix product).

property m.6: let A, B and C be matrices such that AB, AC and B+C are defined.
Then A(B+C) = AB+AC (left distributivity).

property m.7: let A, B and C be matrices such that AC, BC and A+B are defined.
Then (A+B)C = AC+BC (right distributivity).
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m.5 Matrix operations: inversion

Strictly speaking, division is not defined for matrices. The closest equivalent is the concept of matrix
inversion. Before discussing inversion however, it is necessary to introduce an important type of matrices.

definition m.8: the identity matrix of size n, denoted by I or sometimes In to stress the dimension, is
the n×n matrix that has 1 entries on its main diagonal, and 0 entries everywhere else. In other words:

In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


For instance:

example m.11: The identity matrices of size 2 and 4 are given by:

I2 =

(
1 0
0 1

)
I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The remarkable property of the identity matrix is that any matrix pre or post-multiplied by it is left un-
changed. That is, if A is a m× n matrix, then Im A = A and A In = A. In this sense, the identity matrix
represents the equivalent of a multiplication by 1 in the case of scalars.

example m.12:

Let: A =

(
0 −1 4
7 −1 −3

)
Then, computing the products, one can verify that:

I2 A =

(
1 0
0 1

)(
0 −1 4
7 −1 −3

)
=

(
0 −1 4
7 −1 −3

)
and

A I3 =

(
0 −1 4
7 −1 −3

)1 0 0
0 1 0
0 0 1

=

(
0 −1 4
7 −1 −3

)

It is then possible to introduce the concept of matrix inverse:

definition m.9: let A be some n×n matrix. Then if it exists, the inverse of A, denoted by A−1, is the
n×n matrix such that AA−1 = A−1A = In.

The following example illustrates the definition:

example m.13:

Let: A =

(
−2 −5

1 3

)
Then the inverse of A is given by:

A−1 =

(
−3 −5

1 2

)
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Indeed, it is immediate to check that:

AA−1 =

(
−2 −5

1 3

)(
−3 −5

1 2

)
=

(
1 0
0 1

)
and

A−1A =

(
−3 −5

1 2

)(
−2 −5

1 3

)
=

(
1 0
0 1

)
The next example illustrates the equivalence between scalar division and matrix inversion:

example m.14: one of the main interest of matrix inversion lies the resolution of systems of linear equa-
tions. Consider the following system of linear equations:
x1 +3x3 = 1
2x2− x3 = 2
x1 +3x2 + x3 = 3
This system can be reformulated in matrix form as:1 0 3

0 2 −1
1 3 1

x1
x2
x3

=

4
2
3


Or Ax = b, with:

A =

1 0 3
0 2 −1
1 3 1

 x =

x1
x2
x3

 b =

4
2
3


If both sides of the system are pre-multiplied by A−1, one obtains:
A−1Ax = A−1b ⇒ Ix = A−1b ⇒ x = A−1b

In other words, the value of x that satisfies the system of equations can be obtained directly from the
inverse A−1. It is readily verifiable that A−1 is given by:

A−1 =

−5 −9 6
1 2 −1
2 3 −2


Following:

x = A−1b⇒

x1
x2
x3

=

−5 −9 6
1 2 −1
2 3 −2

4
2
3

=

−5
2
2


This example illustrates the relation between matrix inversion and the standard scalar division. Multiply-
ing a scalar by its inverse results in a value of 1. Much the same way, when a matrix is multiplied by
its inverse, the result is the identity matrix. So, when the system Ax = b is pre-multiplied by the inverse
A−1, it turns A into the identity matrix, effectively eliminating it from the left-hand side, leaving only x
remaining. In a way, the operation effectively ”divides“ both sides of the system by A.

There exist different ways to calculate the inverse of a matrix. One method that is commonly used is based
on the concepts of determinant and adjoint of a matrix.

definition m.10: let A be some n× n invertible matrix. Then there exists a number called the deter-
minant of A and denoted by |A|, and a n× n matrix called the adjoint of A and denoted by ad j(A)
such that:
A−1 = 1

|A|ad j(A)
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Computing the determinant and the adjoint of A typically requires complicated calculations and is be-
yond the scope of this manual. The general methodology is thus not developed here, but for the sake of
illustration the formulas are provided for the simple case where A is 2×2.

property m.8: let A be a 2×2 invertible matrix, so that A =

(
a11 a12
a21 a22

)
.

Then |A|= a11a22−a21a12 and ad j(A) =
(

a22 −a12
−a21 a11

)
.

It is not necessarily the case that an inverse exists for a given matrix. This is in fact related to the concept
of determinant. A square matrix which has a determinant equal to zero cannot be inverted. On the other
hand, any non-zero determinant implies the possibility of inversion.

definition m.11: let A be some n×n matrix. If |A|= 0, then A is said to be singular and it cannot be
inverted. If |A| 6= 0, then a well-defined inverse A−1 exists.

For instance:

example m.15:

Let: A =

(
1 2
3 5

)
Then |A|= 1×5−3×2 =−1. Because |A| 6= 0, the inverse of A exists.

Also, ad j(A) =
(

5 −2
−3 1

)
.

Then: A−1 = 1
|A|ad j(A) = 1

−1

(
5 −2
−3 1

)
=

(
−5 2

3 −1

)
It can then be readily verified that:

AA−1 =

(
1 2
3 5

)(
−5 2

3 −1

)
=

(
1 0
0 1

)
= I

and

A−1A =

(
−5 2

3 −1

)(
1 2
3 5

)
=

(
1 0
0 1

)
= I

To conclude this section, a number of common results about matrix inverses and determinants are intro-
duced.

property m.9: let A be some n×n invertible matrix; then the inverse A−1 is unique. (uniqueness of matrix
inverse)

property m.10: let A be some n×n invertible matrix; then
(
A−1

)−1
= A. (inverse of matrix inverse)

property m.11: let a be some scalar and B be some n× n matrix; then (aB)−1 = a−1B−1. (inverse of
scalar multiplication)

property m.12: let A and B be two n×n invertible matrices; then (AB)−1 = B−1A−1. (inverse of matrix
product)

property m.13: let A and D be two invertible matrices, and let B and C be matrices with compliant
dimensions; then:
(A+BDC)−1 = A−1−A−1B(D−1 +CA−1B)−1CA−1. (Sherman-Woodbury-Morrison identity)
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property m.14: let a be some scalar and B be some n×n matrix; then |aB|= an|B|. (determinant of scalar
multiplication)

property m.15: let A and B be two n×n matrices; then |AB|= |A||B|. (determinant of matrix product)

property m.16: let A be some n×n invertible matrix; then |A−1|= |A|−1. (determinant of matrix inverse)

The next two results are less standard, but they can prove occasionally useful in Bayesian statistics.

property m.17: let A be some m×n matrix, and B be some n×m matrix, so that AB and BA are defined.
Then |Im +AB|= |In +BA|. (Sylvester’s determinant identity)

property m.18: let A be some m×n matrix, and B be some n×m matrix, so that AB and BA are defined;
also, let C be any m×m invertible matrix. Then |C+AB|= |C||In+BC−1A|. (generalisation of Sylvester’s
determinant identity).

m.6 Matrix operations: transposition

Matrix transposition represents a very common operation in matrix algebra. It is formally defined as
follows.

definition m.12: let A be some m× n matrix; then the transpose of A, denoted by A′ or AT , is the
n×m matrix such that row i of A becomes column i of A′, for i = 1,2, . . . ,m.

In other words, transposing a matrix means interchanging its rows with its columns, or equivalently, fliping
the matrix over its main diagonal. For instance:

example m.16:

Let: A =

(
3 8 −9
1 0 4

)
b =


1
−2

0
7


Then: A′ =

 3 1
8 0
−9 4

 b′ =
(
1 −2 0 7

)
Matrix transposes have a number of convenient properties.

property m.19: let a be some scalar. Then a′ = a.

property m.20: let A be some matrix. Then (A′)′ = A.

property m.21: let A and B be matrices such that A+B is defined. Then (A+B)′ = A′+B′.

property m.22: let a be some scalar and B be some matrix. Then (aB)′ = aB′.

property m.23: let A and B be matrices such that AB is defined. Then (AB)′ = B′A′.

property m.24: let A be some some n×n invertible matrix. Then (A−1)′ = (A′)−1.

property m.25: let A be some some n×n matrix. Then |A′|= |A|.
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m.7 Some special matrices

This section introduces a number of special matrices that are commonly encountered in matrix algebra in
general, and in statistics in particular. The presentation starts with a very basic concept:

definition m.13: a square matrix is a matrix which has as many rows as columns.

In other words, a square matrix is a matrix of dimension n×n. Some occurrences of square matrices have
already been introduced. The identity matrix for instance is a square matrix. Also, only square matrix can
be inverted.

example m.17:

Let: A =

(
1 0
−3 2

)
B =

(
1 6 −3
−2 0 4

)
Then A is square, while B is not.

Another important concept is that of diagonal:

definition m.14: let A be some matrix; the main diagonal of A is the collection of entries ai j of A
with i = j.

The main diagonal of a matrix A is thus the collection of entries a11,a22, . . . ,ann, where n is the smallest
dimension of A (number of rows or columns).

example m.18:

Let: A =

(
−2 3 1
−3 1 0

)
B =


1 −7 6
0 −5 2
0 −1 2
8 1 −3


Then the main diagonal of A consists in entries a11 = −2 and a22 = 1, while the main diagonal of B is
made of entries b11 = 1, b22 =−5 and b33 = 2.

The concept of main diagonal naturally extends to that of a diagonal matrix.

definition m.15: a square matrix A is diagonal if the entries outside its main diagonal are all zeros.

For instance:

example m.19:

Let: A =

−1 0 0
0 5 0
0 0 7

 B =

(
−3 0 0

0 1 0

)
C =

6 0 0
0 −2 0
1 0 −3

.

A is a diagonal matrix. B is not diagonal since it is not square. C is not diagonal since one entry outside
the main diagonal is non-zero (c31 = 1).

The simplicity of diagonal matrices makes them trivial to invert:

property m.26: let A be a n× n invertible diagonal matrix. Then the inverse of A is the diagonal matrix
such that: a−1

ii = 1/aii, for i = 1,2, . . . ,n.
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In other words, the inverse of a diagonal matrix obtain from the inverse of its main diagonal. For instance:

example m.20:

Let: A =

3 0 0
0 −2 0
0 0 5

 then A−1 =

1
3 0 0
0 −1

2 0
0 0 1

5


Another useful property of diagonal matrices is the simplicity of their determinants:

property m.27: Let A be a n×n diagonal matrix. Then the determinant of A is the product of the terms

on its main diagonal, so that: |A|=
n

Π
i=1

aii.

Another class of important matrices based on the main diagonal is the class of triangular matrices.

definition m.16: a square matrix A is lower triangular if the entries above its main diagonal are all
zeros; a square matrix A is upper triangular if the entries below its main diagonal are all zeros.

For instance:

example m.21:

Let: A =

1 0 0
2 −3 0
5 7 −8

 B =

−1 4 −2
0 1 2
0 0 −8

.

Then A is a lower triangular matrix and B is an upper triangular matrix.

Similarly to diagonal matrices, the determinant of triangular matrices is easy to calculate.

property m.28: let A be a n×n lower or upper triangular matrix. Then the determinant of A is the product

of the terms on its main diagonal, so that: |A|=
n

Π
i=1

aii.

Another class of special matrices is that of symmetric matrices:

definition m.17: a square matrix A is a symmetric matrix if A = A′.

Hence, as the name indicates, a symmetric matrix is a matrix which is symmetric around its main diagonal.
For instance:

example m.22:

Let: A =

−2 −1 4
−1 3 5

4 5 0

.

Then A is a symmetric matrix.

A concept closely related to that of symmetric matrix is that of positive definiteness:

definition m.18: let A be some square, n×n matrix; then A is positive definite if for any vector x of
dimension n, one has x′Ax > 0.
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For instance:

example m.23:

Let: A =

(
2 −1
−1 2

)
x =

(
x1
x2

)
Then: x′Ax =

(
x1 x2

)( 2 −1
−1 2

)(
x1
x2

)
= 2x2

1−2x2x1 +2x2
2 = x2

1 +(x1− x2)
2 + x2

2

All the terms in the sum are positive, so the sum is positive and x′Ax > 0 for any vector x. Hence A is
positive definite.

Matrices that are both symmetric and positive definite have interesting properties. For this reason, they
are used extensively in statistics. One such property is the decomposition of any symmetric and positive
definite matrix into lower triangular matrices:

definition m.19: let A be a symmetric and positive definite matrix; the Cholesky factor of A is the
lower triangular matrix G such that GG′ = A.

For instance:

example m.24:

Let: A =

(
9 −6
−6 5

)
Then G =

(
−3 0

2 1

)
is the Cholesky factor of A. Indeed, it is immediate to check that:

GG′ =
(
−3 0

2 1

)(
−3 2

0 1

)
=

(
9 −6
−6 5

)
= A

Cholesky factors exist for any symmetric positive definite matrix. This is stated in the next property:

property m.29: let A be a symmetric and positive definite matrix; then there exists a Cholesky factor of
A, and this Cholesky factor is unique.

An alternative decomposition for a symmetric and positive definite matrix is the triangular factorisation:

definition m.20: let A be a symmetric and positive definite matrix; the triangular factorisation of A
consists in the pair of matrices F and L such that FLF ′ = A, with F a lower triangular matrix with
ones on the main diagonal, and L a diagonal matrix.

For instance:

example m.25:

Let: A =

(
2 −4
−4 11

)
Then the pair of matrices F =

(
1 0
−2 1

)
and L =

(
2 0
0 3

)
represent the triangular factorisation of A.

Indeed, it is immediate to check that:

FLF ′ =
(

1 0
−2 1

)(
2 0
0 3

)(
1 −2
0 1

)
=

(
2 −4
−4 11

)
= A
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Similarly to Cholesky factorisation, triangular factorisation exists for any symmetric positive definite
matrix:

property m.30: let A be a symmetric and positive definite matrix; then there exists a triangular factorisa-
tion of A, and this triangular factorisation is unique.

Often, one works with the inverse of triangular factorisation matrices. In this respect, the following result
proves very useful:

property m.31: let A be some n× n invertible lower triangular matrix with ones on the main diagonal;
then its inverse A−1 is also lower triangular with ones on the main diagonal, and is given by:
A−1 = In−B+B2 + . . .+(−1)(n−1)B(n−1),
where B is a lower triangular matrix with zeros on the main diagonal and bi j = ai j below the diagonal.

proof : A can be written as A = In +B. Also, the definition of B implies that Bn is the n× n zero matrix.
Following:
A
(
In−B+B2 + . . .+(−1)n−1Bn−1)

)
= (In +B)

(
In−B+B2 + . . .+(−1)n−1Bn−1)

)(
In−B+B2 + . . .+(−1)n−1Bn−1)

)
+
(
B−B2 +B3 + . . .+(−1)n−2Bn−1 +(−1)n−1Bn)

)
= In.
Hence, from the definition of a matrix inverse, In−B+B2 + . . .+(−1)(n−1)B(n−1)) = A−1.
To prove the first part of the assertion, note that the term −B+B2 + . . .+(−1)n−1Bn−1 is a summation
of terms which are of powers of B. Because of the definition of B, the summation is a lower triangular
matrix with zeros on the main diagonal. Following, the full term In−B+B2+ . . .+(−1)n−1Bn−1 is lower
triangular with ones on the main diagonal.

The following example illustrates this property:

example m.26:

Let: A =

 1 0 0
−2 1 0

2 3 1

 then B =

 0 0 0
−2 0 0

2 3 0

 B2 =

 0 0 0
0 0 0
−6 0 0


Following:

A−1 = I3−B+B2 =

1 0 0
0 1 0
0 0 1

−
 0 0 0
−2 0 0

2 3 0

+

 0 0 0
0 0 0
−6 0 0

=

 1 0 0
2 1 0
−8 −3 1


One can check that:

AA−1 =

 1 0 0
−2 1 0

2 3 1

 1 0 0
2 1 0
−8 −3 1

=

1 0 0
0 1 0
0 0 1


To conclude, the details of the calculations involved in the estimation of the Cholesky and triangular
factorisations are developed. This part can be skipped if one is not interested in computational details.
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property m.32: let A be some n×n symmetric positive definite matrix; then its Cholesky factor G can be
estimated from:

g j j =

√
a j j−

j−1

Σ
k=1

g2
jk (diagonal term of column j)

gi j =
1

g j j

(
ai j−

j−1

Σ
k=1

gikg jk
)

(for i > j, terms below the diagonal of column j)

proof : the Cholesky decomposition of A implies that GG′ = A. Developing the involved matrices yields:
g11 0 . . . 0
g21 g22 . . . 0

...
...

. . .
...

gn1 gn2 . . . gnn




g11 g21 . . . gn1
0 g22 . . . gn2
...

...
. . .

...
0 0 . . . gnn

=


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


Then, computing the product on the left-hand side and ignoring the upper triangular part of A because of
symmetry:

g2
11

g21g11 g2
21 +g2

22
...

...
. . .

gn1g11 gn1g21 +gn2g22 . . .
n

Σ
k=1

g2
nk

=


a11
a21 a22

...
...

. . .
an1 an2 . . . ann


Column 1 yields:

g2
11 = a11 ⇒ g11 =

√
a11

g21g11 = a21 ⇒ g21 =
a21
g11

...
gn1g11 = an1 ⇒ gn1 =

an1
g11

Column 2 yields:

g2
21 +g2

22 = a22 ⇒ g22 =
√

a22−g2
21

g31g21 +g32g22 = a32 ⇒ g32 =
1

g22
(a32−g31g21)

...
gn1g21 +gn2g22 = an2 ⇒ gn2 =

1
g22

(an2−gn1g21)

Going on this way, one obtains that in general:

g j j =

√
a j j−

j−1

Σ
k=1

g2
jk gi j =

1
g j j

(
ai j−

j−1

Σ
k=1

gikg jk
)

The same kind of result can be obtained for triangular factorisation:

property m.33: let A be some n× n symmetric positive definite matrix; then its triangular factorisation
matrices F and L can be estimated from:

l j j = a j j−
j−1

Σ
k=1

f 2
jklkk (terms of the L matrix)

fi j =
1

l j j

(
ai j−

j−1

Σ
k=1

fik f jklkk
)

(terms of the F matrix)
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What is the best alternative between Cholesky and triangular factorization? On the one hand, triangular
factorization is more robust numerically because it does not involve square root calculations. On the other
hand, Cholesky factorization involves fewer operations and is usually faster. Which one is best thus often
depends on the context. Also, the two methods are related, so that using one makes it easy to recover the
other. This is stated in the next property:

property m.34: let A be some n× n symmetric positive definite matrix, so that there exists a Cholesky
factor G such that GG′ = A, and a pair of triangular factorisation matrices F and L such that FLF ′ = A.
Then G, F and L are linked by the following relations:

g j j =
√

l j j (diagonal term of column j)
gi j = fi j

√
l j j , (for i > j, terms below the diagonal of column j)

proof : as GG′ = A and FLF ′ = A, then GG′ = FLF ′. Also, because L is a diagonal matrix, it is possible to
define its square root as the diagonal matrix L1/2 whose main diagonal entries are

√
l11,
√

l22, . . ., so that
L1/2L1/2 = L. Following, GG′ = FL1/2L1/2F ′ = FL1/2(L1/2)′F ′ = (FL1/2)(FL1/2)′, and thus G = FL1/2.

Developing the involved matrices yields:
g11 0 . . . 0
g21 g22 . . . 0

...
...

. . .
...

gn1 gn2 . . . gnn

=


1 0 . . . 0

f21 1 . . . 0
...

...
. . .

...
fn1 fn2 . . . 1



√

l11 0 . . . 0
0
√

l22 . . . 0
...

...
. . .

...
0 0 . . .

√
lnn


Then, computing the product on the right-hand side:

g11 0 . . . 0
g21 g22 . . . 0

...
...

. . .
...

gn1 gn2 . . . gnn

=


√

l11 0 . . . 0
f21
√

l11
√

l22 . . . 0
...

...
. . .

...
fn1
√

l11 fn2
√

l22 . . .
√

lnn


The correspondence between pairwise entries establishes the result.

A final remark to conclude this section: the Cholesky factorization can also be used as an efficient way to
invert positive definite matrices. This is stated in the next property:

property m.35: let A be some n×n invertible, symmetric and positive definite matrix. Then the inverse
of A can be obtained from:
A−1 = (G−1)′ G−1

where G is the Cholesky factor of A.

Indeed, because A = GG′, then A−1 = (GG′)−1 = (G′)−1G−1 = (G−1)′ G−1. The benefit of this procedure
over regular inversion is that inverting the lower triangular Cholesky factor G is considerably cheaper
than inverting A directly, thanks to what is known as back substitution. The total calculation time is thus
significantly reduced with this method.
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m.8 Kronecker products

An alternative to the standard matrix product is the so-called Kronecker product, defined as follows:

definition m.21: let A be a m×n matrix, and B be a p×q matrix; the Kronecker product of A and
B, denoted by A⊗B, is the mp×nq matrix given by:

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB



For instance:

example m.27:

Let: A =

(
2 −3
0 1

)
B =

 1 5 −2
−1 0 7
−4 8 0


Then:

A⊗B =

(
a11B a12B
a21B a22B

)

=


(2)

 1 5 −2
−1 0 7
−4 8 0

 (−3)

 1 5 −2
−1 0 7
−4 8 0


(0)

 1 5 −2
−1 0 7
−4 8 0

 (1)

 1 5 −2
−1 0 7
−4 8 0



=



2 10 −4 −3 −15 6
−2 0 14 3 0 −21
−8 16 0 12 −24 0

0 0 0 1 5 −2
0 0 0 −1 0 7
0 0 0 −4 8 0


Unlike the regular matrix product which may not be defined, the kronecker product is always defined for
any pair of matrices A and B. Nevertheless, similarly to standard matrix products, Kronecker products are
not commutative: in general A⊗B 6= B⊗A.

Kronecker products have the following properties:

property m.36: let a be some scalar and B be some matrix; then aB = a⊗B = B⊗a = Ba.

property m.37: let A and B be two matrices; then (A⊗B)′ = A′⊗B′.

property m.38: let A and B be two invertible matrices; then (A⊗B)−1 = A−1⊗B−1.

property m.39: let A, B and C be matrices such that A+B is defined; then A⊗C+B⊗C = (A+B)⊗C.

property m.40: let A, B and C be matrices such that B+C is defined; then A⊗B+A⊗C = A⊗ (B+C).

property m.41: let a be some scalar, and B and C be two matrices; then:
a(B⊗C) = (aB)⊗C = B⊗ (aC) = (B⊗C)a.

property m.42: let A, B, C and D matrices such that AC and BD are defined; then:
(A⊗B)(C⊗D) = (AC)⊗ (BD).

property m.43: let A be some n×n matrix, and B be some k× k matrix; then |A⊗B|= |A|k|B|n.
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m.9 Matrix rank

The rank of a matrix is related to the notion of linear independence:

definition m.22: let A be some matrix; the rank of A, denoted by rank(A), is the maximum number
of linearly independent rows (or columns) in A.

For instance:

example m.28:

Let: A =

1 3 5
2 −1 3
4 −3 4

 and B =

1 3 5
2 −1 3
4 −3 5


Then rank(A) = 3 since all the columns (and rows) of A are linearly independent.

On the other hand, rank(B) = 2 since there are only two linearly independent columns in B. Indeed, the
third column of B is a linear combination of the first two columns:5

3
5

= 2

1
2
4

+1

 3
−1
−3


The rank of a matrix has the following properties:

property m.44: let A be some matrix; then the number of linearly independent rows of A is equal to the
number of linearly independent columns of A. In other words, the row rank of A is equal to the column
rank of A.

property m.45: let A be some n×m matrix; then rank(A) ≤ min(n,m). In other words, the rank of a
matrix is at most equal to the minimum between the number of row and the number of columns.

The notion of full rank is defined as follows.

definition m.23: let A be some matrix; if all the rows (or columns) of A are linearly independent, then
A is said to have full rank .

For instance:

example m.29:

Let A and B be defined as in example m.28. Then A has full rank, while B hasn’t.

The notion of rank is closely related to the notion of invertibility, as stated in the next property:

property m.46: let A be some square, n×n matrix; then A is invertible if and only if A has full rank.
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m.10 Matrix trace

In linear algebra, the trace of a square matrix is defined as:

definition m.24: let A be a n× n square matrix; the trace of A, denoted by tr(A), is the sum of its
main diagonal entries, so that:

tr(A) = a11 +a22 + . . .+ann =
n

Σ
i=1

aii

For instance:

example m.30:

Let: A =

0 2 −6
9 2 1
7 5 −3


Then:

tr(A) = a11 +a22 +a33 = 0+2−3 =−1

Traces have the following properties:

property m.47: let a be some scalar; then a = tr(a).

property m.48: let a be some scalar and B be some matrix; then tr(aB) = a tr(B).

property m.49: let A and B be two n×n square matrices; then tr(A+B) = tr(A)+ tr(B).

property m.50: let A, B, and C be matrices such that the products ABC, CAB and BCA all result in square
matrices; then tr(ABC) = tr(CAB) = tr(BCA) (cyclical property).

m.11 Matrix vectorization

In linear algebra, vectorization is used to convert matrices into vectors:

definition m.25: let A be a m× n matrix; the vectorization of A, denoted by vec(A), is the mn× 1
column vector obtained by rearranging the columns of A on top of each other:

vec(A) =



a11
...

am1
...

a1n
...

amn


For instance:



M.12. EIGENVALUES AND EIGENVECTORS 29

example m.31:

Let: A =

(
1 3 5
0 −4 9

)
then vec(A) =



1
0
3
−4

5
9


Matrix vectorization has the following properties:

property m.51: let A and B be matrices such that A+B is defined; then vec(A+B) = vec(A)+ vec(B).

property m.52: let A and B be matrices such that A′B is a square matrix; then:
vec(A)′vec(B) = vec(B)′vec(A) = tr(A′B) = tr(AB′) = tr(B′A) = tr(BA′).

property m.53: let a be some column vector; then: a = vec(a′).

property m.54: let A, B and C be matrices such that ABC is defined; then vec(ABC) = (C ′⊗A)vec(B).

property m.55: let A,B,C,D,E and F be matrices such that A is n× n and symmetric, D is m×m, and
B,C,E and F are m×n; then:
tr
(
A−1(B−C)′D−1(E−F)

)
=
(
vec(B)− vec(C)

)′
(A⊗D)−1

(
vec(E)− vec(F)

)
.

proof :
tr
(
A−1(B−C)′D−1(E−F)

)
= tr

(
(B−C)′D−1(E−F)A−1

)
(m.50)

= vec(B−C)′× vec
(
D−1(E−F)A−1

)
(m.52)

= vec(B−C)′×
(
(A−1⊗D−1)vec(E−F)

)
(m.54)

=
(
vec(B)− vec(C)

)′
(A−1⊗D−1)

(
vec(E)− vec(F)

)
(m.51)

=
(
vec(B)− vec(C)

)′
(A⊗D)−1

(
vec(E)− vec(F)

)
(m.38)

m.12 Eigenvalues and eigenvectors

Eigenvalues and eigenvectors provide a general way to decompose square matrices. They prove occasion-
ally useful for their relations with matrix determinants and stability analysis.

definition m.26: let A be a n× n square matrix; let v be a n× 1 vector and λ be a scalar such that
Av = λv ; then v is an eigenvector of A, and λ is an eigenvalue of A associated to this eigenvector.

For instance:

example m.32:

Let A =

(
4 −3
2 −1

)
Then v1 =

(
1
1

)
is an eigenvector of A, and λ1 = 1 is the associated eigenvalue.

Indeed, it is straightforward to check that:

Av1 =

(
4 −3
2 −1

)(
1
1

)
=

(
1
1

)
and λ1v1 = (1)

(
1
1

)
=

(
1
1

)
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Then, v2 =

(
3
2

)
is the second eigenvector of A, and its associated eigenvalue is λ2 = 2. It is possible to

check that:

Av2 =

(
4 −3
2 −1

)(
3
2

)
=

(
6
4

)
and λ2v2 = (2)

(
3
2

)
=

(
6
4

)

How eigenvalues and eigenvectors are computed is beyond the scope of this manual. It is however useful
to outline a few properties:

property m.56: let A be a n×n matrix, and let λ1,λ2, . . . ,λn denote the n eigenvalues of A; then the trace
of A is equal to the sum of its n eigenvalues, namely:

tr(A) =
n

Σ
i=1

λi.

property m.57: let A be a n× n matrix, and let λ1,λ2, . . . ,λn denote the n eigenvalues of A; then the
determinant of A is equal to the product of its n eigenvalues, namely:

|A|=
n

Π
i=1

λi.

property m.58: let A be a n×n matrix and let t be some scalar; if λ is an eigenvalue of A , then λ + t is
an eigenvalue of A+ tIn.

proof : because λ is an eigenvalue of A, there exists some eigenvector v such that Av = λv. Then:
Av = λv⇒ Av+ tv = λv+ tv⇒ Av+ tInv = λv+ tv⇒ (A+ tIn)v = (λ + t)v
Therefore, by definition, λ + t is an eigenvalue of A+ tIn.

property m.59: let A be a n× n matrix; then the determinant of In +A is equal to the product of the
eigenvalues of A plus 1:

|In +A|=
n

Π
i=1

(1+λi(A)), where λi(A) denotes the ith eigenvalue of A.

proof :
|In +A|

=
n

Π
i=1

λi(In +A) (m.56), where λi(In +A) denotes the ith eigenvalue of In +A

=
n

Π
i=1

(1+λi(A)) (m.57) in the case t = 1

One of the main use of eigenvalues and eigenvectors is what is known as the diagonalization of matrices.
Consider some matrix A of dimension n× n. Then, using eigenvalues and eigenvectors, one can write:
Av1 = λ1v1,Av1 = λ2v2, · · · ,λnvn. These n solutions can be written as a single compact system of matrices
as:
AV =V Λ

with:

V =


...

...
...

v1 v2 . . . vn
...

...
...

 and Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

.

Post-multiplying both sides by V−1 yields:
A =V ΛV−1

This operation diagonalizes the matrix A by the way of matrix Λ. Its main application in statistics is
related to stability analysis, through the following two results:
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property m.60: let A be a n×n square matrix, and let V and Λ be the associated matrices of eigenvectors
and eigenvalues; then:
Ak =V ΛkV−1

with Λk =


λ k

1 0 . . . 0
0 λ k

2 . . . 0
...

...
. . .

...
0 0 . . . λ k

n


proof : Ak = (V ΛkV−1)k =V ΛV−1×V ΛV−1× . . .×V ΛV−1︸ ︷︷ ︸

k times

=V Λ×Λ× . . .×Λ︸ ︷︷ ︸
k times

V−1 =V ΛkV−1

property m.61: let A be a n×n square matrix, and let V and Λ be respectively the associated matrices of
eigenvectors and eigenvalues; if the n eigenvalues of A are all smaller than one in absolute value, namely
|λ1|< 1, |λ2|< 1, . . . , |λn|< 1, then:

lim
k→∞

Ak = 0

proof : from property m.59, Ak =V ΛkV−1. For i = 1,2, . . . ,n, if |λi|< 1, then lim
k→∞

λ k
i = 0. Following:

lim
k→∞

Λk = lim
k→∞


λ k

1 0 . . . 0
0 λ k

2 . . . 0
...

...
. . .

...
0 0 . . . λ k

n

=


lim
k→∞

λ k
1 0 . . . 0

0 lim
k→∞

λ k
2 . . . 0

...
...

. . .
...

0 0 . . . lim
k→∞

λ k
n

=


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


Hence lim

k→∞

Ak =V lim
k→∞

ΛkV−1 =V 0V−1 = 0

m.13 Matrix definiteness

To discuss definiteness, one first needs the notion of quadratic form.

definition m.27: let A be a n×n square matrix and b an n-dimensional vector; the quadratic form of
A is the scalar x such that:

x = b′Ab

For instance:

example m.33:

Let A =

(
4 −3
2 −1

)
and b =

(
−2

1

)
Then the quadratic form of A and b is given by:

x = b′Ab =
(
−2 1

)(4 −3
2 −1

)(
−2

1

)
= 17
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It is then possible to define positive definiteness:

definition m.28: let A be a n× n symmetric matrix; A is positive definite if for any non-zero n-
dimensional vector b the quadratic form x = b′Ab is strictly positive (that is, x = b′Ab > 0). A is
positive semi-definite if instead b′Ab≥ 0 for any non-zero n-dimensional vector b.

For instance:

example m.34:

Let A =

(
4 −2
−2 3

)
Then for any vector b =

(
b1
b2

)
, the quadratic form of A and b is given by:

x = b′Ab =
(
b1 b2

)( 4 −2
−2 3

)(
b1
b2

)
= 2b2

1 +2(b1−b2)
2 +b2

2

The quadratic form involves only positive combinations of square terms, and is thus strictly positive for
any non-zero vector b. Therefore, A is positive definite.

The notion of positive definiteness is important in statistics because variance-covariance matrices are
always positive definite. As a consequence, certain statistical distributions used to generate variance-
covariance matrices like the inverse Wishart distribution involve positive definite matrices both for their
parameters and generated values.

At the opposite of positive definiteness is the notion of negative definiteness.

definition m.29: let A be a n× n symmetric matrix; A is negative definite if for any non-zero n-
dimensional vector b the quadratic form x = b′Ab is strictly negative (that is, x = b′Ab < 0). A is
negative semi-definite if instead b′Ab≤ 0 for any non-zero n-dimensional vector b.

A matrix which is neither positive definite nor negative definite is said to be indefinite.

There exists a close relation between definiteness and the eigenvalues of a matrix, as stated by the next
result.

property m.62: let A be a n× n symmetric matrix; A is positive definite (respectively positive semi-
definite) if all its eigenvalues are positive (respectively non-negative).

property m.63: let A be a n× n symmetric matrix; A is negative definite (respectively negative semi-
definite) if all its eigenvalues are negative (respectively non-positve).

m.14 Partitioned matrices

Partitioned matrices provide a convenient representation. They are defined as follows.

definition m.30: a partitioned matrix is a matrix that has been partitioned into a set of submatrices
by indicating subgroups (or “blocks”) of rows and or columns.
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For instance:

example m.35:

Let A =

 2 −4 0 3
1 2 −5 7
−1 0 1 6

=

(
A11 A12

A21 A22

)
with:

A11 =

(
2 −4 0
1 2 −5

)
A12 =

(
3
7

)
A21 =

(
−1 0 1

)
A22 =

(
6
)

It is worth noting that the partitioning is only an interpretation, or a visualization of the original matrix.
The representation may prove however quite convenient because the usual rules of matrix addition and
multiplication directly apply to partitioned matrices, provided the submatrices are of appropriate dimen-
sions. This is stated in the next properties.

property m.64: let A and B be some matrices partitioned as:

A =

(
A11 A12

A21 A22

)
B =

(
B11 B12

B21 B22

)
Then, provided the dimensions of the submatrices agree, the addition is defined as:

A+B =

(
A11 +B11 A12 +B12

A21 +B21 A22 +B22

)
property m.65: let A and B be some matrices partitioned as:

A =

(
A11 A12

A21 A22

)
B =

(
B11 B12

B21 B22

)
Then, provided the dimensions of the submatrices agree, the mutiplication is defined as:

A×B =

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
The logic is similar if the matrix is partitioned into more blocks. In general, matrix partitionning can
significantly improve the visualisation of large block matrices, as well as their interractions with other
large matrices.
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d.1. Discrete uniform

-2 -1 0 1 2 3 4 5
0

0.1

0.2

Type: discrete

Notation: x∼U(a,b)

Parameters: a (integer, lower bound of the support)
b (integer, upper bound of the support, b > a)

Support: x ∈ {a,a+1, . . . ,b−1,b}

pmf: f (x|a,b) = 1
k k = b−a+1 (number of outcomes)

Kernel: f (x|a,b) ∝
1
k

Normalizing constant: c = 1

Mean: a+b
2

Variance: k2−1
12

Median: a+b
2

Mode: any x ∈ {a,a+1, . . . ,b−1,b}

Diffuse distribution: set a→−∞ and b→ ∞

Related distributions: –

Table d.1: Summary of the Discrete uniform distribution

The uniform distribution represents one of the simplest discrete distributions. It is used in the case of
experiments with k outcomes, all equally likely. This includes for instance the outcome of a fair die roll,
or the number obtained from a roulette game. The distribution is straightforward: the mean is found
halfway of the support, and the variance increases with the spread of the distribution, i.e. the number of
outcomes. This is illustrated by Figure d.1.
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Figure d.1: Variance of discrete uniform distributions

Generating pseudo random numbers from the discrete uniform distribution is easy, as long as one can cre-
ate pseudo random numbers from the continuous uniform distribution. This is illustrated by the following
algorithm.

algorithm d.1: random number generator for the discrete uniform distribution

1. draw a random number u from the continuous uniform distribution: u∼U(0,1).

2. set x = ba+(b+1−a)uc, where b.c denotes the integer part of x.

Then x is a random draw from x∼U(a,b).
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d.2. Bernoulli

0 1
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Type: discrete

Notation: x∼ Bern(p)

Parameters: p (success probability, 0≤ p≤ 1)

Support: x ∈ {0,1}

pmf: f (x|p) = px(1− p)1−x

Kernel: f (x|p) ∝ px(1− p)1−x

Normalizing constant: c = 1

Mean: p

Variance: p(1− p)

Median:

{
0, if p≤ 0.5
1, if p > 0.5

Mode:

{
0, if p≤ 0.5
1, if p > 0.5

Diffuse distribution: f (x|p) ∝ 1

Related distributions: Discrete uniform: if x1 ∼ Bern(0.5), then x1 ∼U(0,1)

Binomial: if x1,x2, . . . ,xn are i.i.d ∼ Bern(p), then
n

Σ
i=1

xi ∼ Bin(p,n)

Table d.2: Summary of the Bernoulli distribution
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The Bernoulli distribution is used in situations where the considered random experiment can only produce
two outcomes. Typical examples are the outcome of a coin flip (heads or tails), the gender of a baby (male
or female), the success at an exam (pass or fail), and so on. The outcomes are labelled as “success”, in
which case the variable takes the value of 1, or “failure”, in which case the variable takes the value of 0.
The probability of success is given by p, implying that the probability of failure is 1− p. The parameter
also determines the variance of the distribution, the maximum variance being reached when p = 0.5, and
declining as p approaches 0 or 1. This is illustrated by Figure d.2:
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Figure d.2: Variance of Bernoulli distributions

The following algorithm can be used to generate pseudo random numbers from the Bernoulli distribution.

algorithm d.2: random number generator for the Bernoulli distribution

1. draw a random number u from the continuous uniform distribution: u∼U(0,1).

2. if u≤ p, set x = 1; otherwise, set x = 0.

Then x is a random draw from x∼ Bern(p).
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d.3. Categorical
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Type: discrete

Notation: x∼Cat(p1, p2, . . . , pk)

Parameters: p1, p2, . . . , pk (outcome probabilities, pi > 0 ∀i = 1,2, . . . ,k, and
k

Σ
i=1

pi = 1)

Support: x ∈ {1,2, . . . ,k}

pmf: f (x|p1, p2, . . . , pk) =
k

Π
i=1

p1(x=i)
i 1(.) denotes the indicator function

Kernel: f (x|p1, p2, . . . , pk) ∝

k

Π
i=1

p1(x=i)
i

Normalizing constant: c = 1

Mean:
k

Σ
i=1

ipi

Variance:
k

Σ
i=1

i2 pi− (
k

Σ
i=1

ipi)
2

Median: i such that
i−1

Σ
j=1

p j ≤ 0.5 and
i

Σ
j=1

p j ≥ 0.5

Mode: i such that pi = max(p1, p2, . . . , pk)

Diffuse distribution: f (x|p1, p2, . . . , pk) ∝ 1

Related distributions: Uniform: if x∼Cat(1
k , . . . ,

1
k ), then: x∼U(1,k)

Bernoulli: if x∼Cat(p1, p2), then x∼ Bern(p1)
Multinomial: if x1,x2, . . . ,xn are i.i.d ∼Cat(p1, p2, . . . , pk), then:

n

Σ
i=1

xi ∼Mun(p1, p2, . . . , pk,n)

Table d.3: Summary of the Categorical distribution
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The categorical distribution represents a generalization of the Bernoulli distribution. While Bernoulli
outcomes are restricted to be binary, the categorical distribution expands the number of possible out-
comes to k. Typical applications are the outcome of rolling a 6-face die, or the mark obtained at an
exam (A,B,C,D,E or F). The different outcomes are labelled as 1,2, . . . ,k, the numbers representing the
different categories.

Pseudo random numbers from the categorical distribution can be easily generated from the following
algorithm.

algorithm d.3: random number generator for the categorical distribution

1. draw a random number u from the continuous uniform distribution: u∼U(0,1).

2. if u≤ p1, set x = 1; if p1 < u≤ p1 + p2, set x = 2, and so on. In general:

if
i−1

Σ
j=1

p j ≤ u≤
i

Σ
j=1

p j, set x = i, for i = 1, . . . ,k.

Then x is a random draw from x∼Cat(p1, p2, . . . , pk).
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d.4. Binomial

0 5 10 15 20 25
0

0.1

0.2

Type: discrete

Notation: x∼ Bin(n, p)

Parameters: n (integer, number of trials)
p (probability of success for each trial, 0≤ p≤ 1)

Support: x ∈ {1, . . . ,n}

pmf: f (x|n, p) =
(

n
x

)
px(1− p)n−x

(
n
x

)
= n!

x!(n−x)!

Kernel: f (x|n, p) ∝
1

x!(n−x)! px(1− p)n−x

Normalizing constant: c = n!

Mean: np

Variance: np(1− p)

Median: bnpc b.c denotes the floor function

Mode: b(n+1)pc

Diffuse distribution: f (x|n, p) ∝ 1

Related distributions: Bernoulli: if x∼ Bin(1, p), then x∼ Bern(p)
Normal: if x∼ Bin(n, p) with np≥ 5 and n(1− p)≥ 5, then approximately:
x∼ N(np,np(1− p))
Poisson: if x∼ Bin(n, p) with n≥ 100 and np≤ 10, then approximately:
x∼ Pois(np)

Table d.4: Summary of the Binomial distribution
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The Binomial distribution considers the number of succesful outcomes from n independent Bernoulli ex-
periments. In this respect it is closely related to the Bernoulli distribution, and the success probability p
of the Bernoulli distribution determines the mass function of the Binomial distribution, along with its mo-
ments. There are two characteristic features of the binomial distribution. First, the mean and the variance
of the distribution are increasing with the number of trials n. Second, the skewness of the distribution is
determined by the probability of success p: values lower than 0.5 generate positive skewness, while values
greater than 0.5 imply negative skewness, the distribution being symmetric at p = 0.5. This is illustrated
by Figures d.3 and d.4:
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Figure d.3: Mean and variance of Binomial distributions (ppp === 000...444)
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Figure d.4: Skewness of Binomial distributions (nnn === 222000)

Finally, the Binomial distribution is related to both the normal and Poisson distributions when the number
of trials n becomes large enough. When the probability of success p is sufficiently close to 0.5, the Bi-
nomial distribution provides a discrete approximation to the normal distribution, while if p is sufficiently
small, the Binomial distribution approximates the Poisson distribution.

As a conclusion to this section, the following algorithm introduces the procedure to generate pseudo
random numbers from the Binomial distribution. It makes direct use of the definition of the binomial
distribution as the sum of n independent Bernoulli trials:

algorithm d.4: random number generator for the Binomial distribution

1. draw independently n numbers x1, . . . ,xn from: xi ∼ Bern(p) , i = 1, . . . ,n.

2. set x = x1 + . . .+ xn.

Then x is a random draw from x∼ Bin(n, p).
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d.5. Multinomial
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Type: discrete

Notation: x∼Mun(n, p1, . . . , pk)

Parameters: n (integer, number of trials)

p1, . . . , pk (outcome probabilities, pi > 0 ∀i = 1,2, . . . ,k, and
k

Σ
i=1

pi = 1)

Support: x1, . . . ,xk ∈ {1, . . . ,n}, with
k

Σ
i=1

xi = n

pmf: f (x1, . . . ,xk|n, p1, . . . , pk) =
n!

x1!...xk! px1
1 . . . pxk

k

Kernel: f (x1, . . . ,xk|n, p1, . . . , pk) ∝
1

x1!...xk! px1
1 . . . pxk

k

Normalizing constant: c = n!

Mean: E(xi) = npi

Variance: Var(xi) = npi(1− pi) , Cov(xi,x j) =−npi p j

Median: bnpic for variable xi b.c denotes the floor function

Mode: b(n+1)pic for variable xi

Diffuse distribution: f (x1, . . . ,xk|n, p1, . . . , pk) ∝ 1

Related distributions: Binomial: if x∼Mun(n, p1, p2), then x∼ Bin(n, p1)
Categorical: if x∼Mun(1, p1, . . . , pk), then x∼Cat(p1, . . . , pk)

Table d.5: Summary of the Multinomial distribution
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The multinomial distribution generalizes the Binomial distribution to the case of experiments with k pos-
sible outcomes. Concretely, the multinomial distribution considers the outcome of repeated categorical
experiments, much the same way the Binomial considers the outcome of repeated Bernoulli experiments.

The marginal distributions of the k variables x1, . . . ,xk are Binomial: xi ∼ Bin(n, pi). Following, all the
properties of the Binomial distribution apply to the individual variables xi, including the fact that the mean
and variance increase with the number of experiments n. On the other hand, the covariance between any
two variables xi and x j is always negative, and the correlation tends to -1 as the success probabilities of
variables pi approaches 1− p j. This is illustrated by Figure d.5:

10
5

00

5

10

0.1

0.15

0.2

0.25

0

0.05

(a) p1, p2=0.1, Corr(x1,x2 =−0.11)

10
5

00

5

10

0.2

0.25

0.05

0.1

0.15

0

(b) p1, p2=0.3, Corr(x1,x2 =−0.43)

10
5

00

5

10
0

0.05

0.1

0.15

0.2

0.25

(c) p1, p2=0.5, Corr(x1,x2 =−1)

Figure d.5: Correlation of Multinomial distributions (kkk === 333,,,nnn === 111000)

It is easy to generate pseudo random numbers from the Multinomial distribution, making direct use of the
definition of the multinomial distribution as the sum of n independent categorical trials.

algorithm d.5: random number generator for the Multinomial distribution

1. generate n numbers z1, . . . ,zn from: z j ∼Cat(p1, . . . , pk) , j = 1, . . . ,n.

2. for i = 1, . . . ,k, set xi as the number of times z j was equal to i, that is, the number of times z j was a
success for category i.

Then x = (x1, . . . ,xk) is a random draw from x∼Mun(n, p1, . . . , pk).
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d.6. Poisson

0 5 10 15 20 25
0

0.1

0.2

Type: discrete

Notation: x∼ Pois(λ )

Parameters: λ (intensity parameter, scalar with λ > 0)

Support: x ∈ Z∗ Z∗ = {0,1,2, · · ·}, the set of non-negative integers

pmf: f (x|λ ) = λ xe−λ

x!

Kernel: f (x|λ ) ∝
λ x

x!

Normalizing constant: c = e−λ

Mean: λ

Variance: λ

Median: ≈
⌊
λ + 1

3 −
0.02

λ

⌋
b.c denotes the floor function

Mode: bλc

Diffuse distribution: set λ → ∞

Related distributions: Normal: if x∼ Pois(λ ) with λ ≥ 1000, then approximately x∼ N(λ ,λ )

Table d.6: Summary of the Poisson distribution
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The Poisson distribution considers the number of occurrences of a given event in a specified interval
of time or distance. Because the number of occurrences is typically assmed to be small, the Poisson
distribution is sometimes refered to as the “law of small numbers”. The occurrences are also independent,
namely, the occurrence of one event does not affect the probability of occurrence of a second event.
Typical examples are the number of calls reaching a call center in a minute, or the number of car accidents
over a 200 kilometers portion of highway.

The distribution is characterized by a unique intensity parameter λ which represents both the mean and
the variance of the distribution. Following, rare events (small values of λ ) consistently result in small
number of occurrences, while more likely events (large values of λ ) are characterized by more variability
and allow for both small and large numbers of occurrences. This is represented by Figure d.6:

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

(a) λ = 1

0 5 10 15 20
0

0.1

0.2

0.3

(b) λ = 5

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

(c) λ = 20

Figure d.6: Mean and variance of Poisson distributions

If λ is small enough, one can generate pseudo-random Poisson numbers easily with the following algo-
rithm.

algorithm d.6: random number generator for the Poisson distribution, λλλ ≤≤≤ 333000

1. set p = F = e−λ , and z = 0.

2. draw a random number u from u∼U(0,1).

3. if u > F : set z = z+1, p = λ p
z , F = F + p and repeat step 3;

else, if u≤ F , set x = z.

Then x is a random draw from x∼ Pois(λ ).

This algorithm is based upon inversion by sequential search. It is algorithm 3 in Kemp and Kemp (1991).
It is fast for small values of λ . However the number of computations increases linearly with λ , so that
when λ becomes large the algorithm becomes excessively slow. It also become numerically unstable
because of the very small value of the e−λ term. For large values, a better alternative is algorithm 8 in
Kemp and Kemp (1991). It uses a unidirectional search from the mode and looks considerably more
complex. However, the different steps all rely on basic operations, which keeps the algorithm fast.
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algorithm d.7: random number generator for the Poisson distribution, λλλ >>> 333000

preliminary phase
1. set the first series of preliminary functions:

qr(λ ) = (2πλ )−1/2
(

1− 1
12λ+ 1

2+
293

720λ

)
Gr(λ ) =

1
2 +

2
3(2πλ )−1/2

1−
23
15

12λ+ 15
14+

30557
4508

12λ+ 138134432
105880005


2. decompose λ into λ = λ̄ +α , where λ̄ is an integer and−0.5≤ α ≤ 0.5, so that λ̄ = bλc when α ≥ 0,

and λ̄ = bλc+1 when α < 0. This implies: λ̄ = bλ +0.5c and α = λ − λ̄ . Also, set c = (2πλ̄ )−1/2.

3. set the second series of preliminary functions:

pr(λ̄ ,α) = qr(λ̄ )

(
λ̄+ 2α

3 −
α2
4 −

α2

18λ̄

λ̄+ 2α

3 + α2
4 −

α2
18λ̄

)
Fr(λ̄ ,α) = Gr(λ̄ )−αqr(λ̄ )

(
λ̄+ α

2−
α2
60 −

α2

20λ̄

λ̄+ α

2 +
3α2
20 −

α2
20λ̄

)
It should be clear that when λ is an integer, λ = λ̄ , α = 0 and consequently pr(λ̄ ,α) = qr(λ ) and
Fr(λ̄ ,α) = Gr(λ ).

4. calculate pr(λ̄ ,α).

5. draw a random number u from u∼U(0,1).
squeeze phase

6. if u≤ 0.5, go directly to step 9; else, if u≥ 0.5+ 7c
6 , go directly to step 12; else:

7. calculate Fr(λ̄ ,α).

8. if u > Fr(λ̄ ,α), go directly to step 12; else:

downward search phase
9. if u < pr(λ̄ ,α), set x = λ̄ and stop; else:

10. set p = pr(λ̄ ,α).

11. for i = 0 to λ̄ −1:
set u = u− p, and p = (λ̄−i)p

λ
;

if u < p, set x = λ̄ − i−1 and stop.

upward search phase
12. set u = 1−u, and p = pr(λ̄ ,α).

13. for i = λ̄ +1 to λmax :
set p = pλ

i .
if u < p, set x = i and stop.
set u = u− p.
λmax is an upper bound factor for the upward search. Following the recommendations of Kemp and
Kemp (1991), λmax is set to 2λ̄ +30.

Then x is a random draw from x∼ Pois(λ ).
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d.7. Uniform
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0

0.1

0.2

0.3

Type: continuous

Notation: x∼U(a,b)

Parameters: a (scalar, lower bound of the support)
b (scalar, upper bound of the support, b > a)

Support: x ∈ [a,b]

pdf: f (x|a,b) = 1
b−a

Kernel: f (x|a,b) ∝ 1

Normalizing constant: c = 1
b−a

Mean: a+b
2

Variance: (b−a)2

12

Median: a+b
2

Mode: any x ∈ [a,b]

Diffuse distribution: set a→−∞ and b→ ∞

Related distributions: –

Table d.7: Summary of the Uniform distribution
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The uniform distribution is the continuous counterpart to the discrete uniform distribution. It assumes
constant probability over its support, the closed interval [a,b]. The distribution is straightforward: the
mean and median are found half-way of the support, and the variance of the distribution increases as the
support enlarges, as illustrated by Figure d.7:
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Figure d.7: Variance of the uniform distribution (mean=5)

In practical applications, the uniform distribution is often used whenever one wants to remain agnostic
about the outcome of an experiment. This is reflected by the flat probability attributed to all the possible
outcomes. For instance, a uniform distribution over [0,1] can be used to model an agnostic belief about
the probability that a coin yields “heads”.

The uniform distribution also represents one of the most important statistical distributions because it con-
stitutes the basis of virtually every algorithm used to generate random numbers from any other distribution.
It is thus crucial to generate uniform numbers efficiently.

For years, a class of algorithms known as the linear congruential generator algorithms were used. Those
algorithms are easy to understand and run fast, but they repeat themselves after a given period, and it is
possible to show that the numbers that are produced are not effectively random, but lie on a finite number
of hyperplanes. For these reasons, more efficient algorithms have been developed. The current standard
is an algorithm known as the Mersenne twister, developed by Matsumoto and Nishimura (1998). In
comparison with the linear congruential generator algorithms, the Mersenne twister benefits from longer
periods, and the numbers produced offer better randomness properties. The algorithm is fairly complicated
and it thus not introduced in details here. Most mathematical software applications like Matlab, R or
NumPy integrate built-in functions for this algorithm.

To provide an intuition of how uniform numbers can be easily generated, the linear congruential generator
algorithm is introduced. This is only for the sake of pedagogy, as again the Mersenne twister represents a
better alternative.

algorithm d.8: random number generator for the uniform distribution (linear congruential genera-
tor)

1. set the following integer values:
m, with m > 0: the modulus
a, with 0 < a < m: the multiplier
c, with 0≤ c < m: the increment
x0, with 0≤ x0 < m: the seed or initial value

2. generate any quantity of random numbers from the following recurrence relation:
xn = (axn−1 + c) mod m
where “(axn−1 + c) mod m” means: “divide (axn−1 + c) by m, and take the remainder”.

Then x1,x2, . . . are random draws from x∼U(0,1).
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The preceding algorithm produces random numbers from x∼U(0,1). It is then trivial to use those num-
bers to generate random numbers from a general distribution x∼U(a,b), using the following algorithm:

algorithm d.9: random number generator for the uniform distribution

1. draw a random number u from u∼U(0,1).

2. set x = a+u(b−a).

Then x is a random draw from x∼U(a,b).
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d.8. Normal
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Type: continuous

Notation: x∼ N(µ,σ)

Parameters: µ (mean, scalar)
σ (variance, scalar with σ > 0)

Support: x ∈ R

pdf: f (x|µ,σ) = (2πσ)−1/2exp
(
−1

2
(x−µ)2

σ

)
Kernel: f (x|µ,σ) ∝ exp

(
−1

2
(x−µ)2

σ

)
Normalizing constant: c = (2πσ)−1/2

Mean: µ

Variance: σ

Median: µ

Mode: µ

Diffuse distribution: set µ = 0 and σ → ∞ (proper distribution)
or set f (x|µ,σ) ∝ 1 (improper distribution)

Related distributions: –

Table d.8: Summary of the normal distribution
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The normal distribution represents by far the most important distribution in statistics. One reason is the
remarkable result known as the central limit theorem. Another reason is the shape of the distribution
which makes it an attractive candidate for many types of random variables. First, the support of the
distribution ranges from −∞ to +∞, making the normal distribution suitable for random variables taking
any real value. Second, the bell shape of the density function implies that the bulk of probabilities are
concentrated around the mean, making extreme events (values far away from the mean) unlikely. Finally,
the distribution is symmetric around the mean, reflecting the fact that many random experiments behave
similarly on both sides of the mean. Following, the normal distribution can be used for a wide range of
real-life phenomena. Typical examples are the distribution of adult heights, the distribution of marks on
tests, or stock market returns.

The normal distribution is characterised by two parameters. The first is the mean parameter µ . By
changing µ , the distribution shifts rightward or leftward, without affecting the general shape, as shown by
Figure d.8:
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Figure d.8: Mean of the normal distribution (unit variance)

The second parameter is the variance σ . Unlike most textbooks, this manual uses σ and not σ2 to denote
the variance. This makes notations more consistent with other distributions (in particular the other normal
and student distributions), and avoid the ambiguity of treating the square superscript as a notation or as an
actual mathematical operator. For a given mean µ , larger values of σ increase the spread and the flatness
of the distribution, resulting in higher variance. This is illustrated by Figure d.9:
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(a) variance: σ = 0.25
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Figure d.9: Variance of the normal distribution (zero mean)

The special case where the mean µ is equal to 0 and the variance σ is equal to 1 is known as the standard
normal distribution. From the standard normal distribution, is easy to construct a normal distribution with
arbitrary mean and variance by using the following property, known as the affine property of the normal
distribution:

property d.1: let x be a normally distributed random variable: x ∼ N(µ,σ), and let y = ax+ b. Then:
y∼ N(aµ +b,a2σ).
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A plethora of different algorithms is available to generate pseudo random normal numbers. In practice, it is
not necessary to code any of them since all mathematical softwares are equipped with built-in functions to
generate random normal numbers, though different softwares use different methods. For instance, Matlab
uses the Ziggurat Method introduced by Marsaglia and Tsang (2000b), NumPy uses the Box-Muller
approach from Box and Muller (1958), and R implements an inversion procedure identifying cumulative
densities with Wichura (1988). The algorithm proposed here is simple and relies on the polar method
proposed by Marsaglia and Bray (1964).

algorithm d.10: random number generator for the standard normal distribution

1. draw two random numbers u1 and u2 from u1,u2 ∼U(−1,1).

2. set u3 = u2
1 +u2

2; if u3 ≥ 1, go back to step 1; else:

3. define: x1 = u1

√
−2ln(u3)

u3
and x2 = u2

√
−2ln(u3)

u3

Then x1 and x2 are random draws from x1,x2 ∼ N(0,1).

Once one can generate draws from x ∼ N(0,1), it becomes easy to generate random numbers from an
arbitrary normal distribution x∼ N(µ,σ), using property d.1.

algorithm d.11: random number generator for the normal distribution

1. draw z from the standard normal distribution: z∼ N(0,1).

2. set x =
√

σz+µ .

Then x is a random draw from x∼ N(µ,σ).
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d.9. Multivariate normal

Type: continuous

Notation: x∼ N(µ,Σ)

Parameters: µ (n-dimensional mean vector)
Σ (n×n variance-covariance matrix, symmetric and positive definite)

Support: x ∈ Rn, the set of n×1 vectors of real numbers

pdf: f (x|µ,Σ) = (2π)−n/2|Σ|−1/2exp
(
−1

2(x−µ)′Σ−1(x−µ)
)

Kernel: f (x|µ,Σ) ∝ exp
(
−1

2(x−µ)′Σ−1(x−µ)
)

Normalizing constant: c = (2π)−n/2|Σ|−1/2

Mean: µ

Variance: Σ

Median: µ

Mode: µ

Diffuse distribution: set µ = 0 and Σ = σ In, with σ a scalar such that σ → ∞ (proper distribution)
or set f (x|µ,Σ) ∝ 1 (improper distribution)

Related distributions: Normal: if n = 1, then x∼ N(µ,σ) (univariate normal)

Table d.9: Summary of the Multivariate normal distribution

The multivariate normal distribution represents a generalization of the one-dimensional normal distribu-
tion to n-dimensional random vectors. It is used to model the joint distribution of several normal random
variables, possibly correlated. For instance, the height and weight of the adult population of a given
country are both approximately distributed, and certainly correlated.

The parallel with the univariate normal distribution is straightforward. The mean of the joint distribution
is determined by the n-dimensional vector µ . A change in µ j (the jth entry of µ) switches the distribution
rightward or leftward in the jth dimension, leaving the other dimensions unaffected. This is illustrated by
figure d.10.
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(a) µ1 = 0, µ2 = 0 (b) µ1 = 2, µ2 = 0 (c) µ1 = 0, µ2 = 2

Figure d.10: Mean of the multivariate normal distribution (nnn === 222, unit variance)

A similar logic applies to the variance of the distribution: an increase in σ j j (the jth diagonal entry of
the variance-covariance matrix Σ) results in a larger spread of the distribution in dimension j, leaving the
spread of other dimensions unchanged. This is illustrated by Figure d.11:

(a) σ11 = 0.5, σ22 = 0.5 (b) σ11 = 2, σ22 = 0.5 (c) σ11 = 0.5, σ22 = 2

Figure d.11: Variance of the multivariate normal distribution (nnn === 222, mean=0)

A specificity of the multivariate normal compared to the univariate normal is the possible existence of
correlation between the different variables. This is defined by the covariance (off-diagonal) entries of Σ.
When correlation is positive, the two variables tend to produce similar values and the density function is
oriented upward. When correlation is negative, the two variables tend to produce opposite values and the
density function is oriented downward. This is illustrated by Figure d.12:

(a) correlation=0 (b) correlation=0.8 (c) correlation=-0.8

Figure d.12: Correlation of the multivariate normal distribution (nnn === 222, mean=0, variance=1)

The multivariate normal distribution has a number of convenient properties. Because this distribution is
used extensively in Bayesian analysis, it is useful to detail some of those properties. The first property
represents the multivariate generalisation of the affine property of the Normal distribution. It says that
linear combinations of normal random variables are also normal. This is stated in the following property.
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property d.2: let x be a random variable with: x ∼ N(µ,Σ). Let A be some matrix and b be some vector
such that y = Ax+b is defined. Then:
y∼ N(Aµ +b , AΣA′ )

The second property is very useful and relates to the marginal distributions of a multivariate normal
distribution. It states that the marginal distributions of a multivariate normal distribution are themselves
normal.

property d.3: let x be a random variable with: x ∼ N(µ,Σ). Let x, µ and Σ be partitioned the following
way:

x =


x1

x2
...

xp


n1

n2

...
np

µ =


µ1

µ2
...

µp


n1

n2

...
np

Σ =


Σ11 Σ12 . . . Σ1p

Σ21 Σ22 . . . Σ2p
...

...
. . .

...
Σp1 Σp2 . . . Σpp


n1

n2

...
np

n1 n2 ... np

with n1 +n2 + . . .+np = n.

Then xi ∼ N(µi,Σii), for all i = 1,2, . . . , p.

A corollary obtains when the partition is realised at the entry level, for then every individual entry of a
multivariate normal distribution follows a univariate normal distribution:

property d.4: let x be a random variable with: x∼ N(µ,Σ). Then:
xi ∼ N(µi,Σii) , for all i = 1,2, . . . ,n.

The converse is not generally true: random variables which are individually normally distributed are not
necessarily jointly normal. This will be the case however if the random variables are independent, and
this is stated in the next property.

property d.5: let x1,x2, . . . ,xp be p independent multivariate random variables with:
xi ∼ N(µi,Σii).
Then:
x∼ N(µ,Σ), with:

x =


x1

x2
...

xp


n1

n2

...
np

µ =


µ1

µ2
...

µp


n1

n2

...
np

Σ =


Σ11 0 . . . 0
0 Σ22 . . . 0
...

...
. . .

...
0 0 . . . Σpp


n1

n2

...
np

n1 n2 ... np

and n = n1 +n2 + . . .+np.
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Finally, the following algorithms introduce the procedures to generate pseudo random numbers from the
multivariate normal distribution. First, the next algorithm considers the generation of random numbers
from the standard multivariate normal distribution.

algorithm d.12: random number generator for the standard multivariate normal distribution

1. draw p random numbers x1, . . . ,xn from the standard normal distribution: xi ∼ N(0,1).

2. organise these n values in a n-dimensional column vector x.

Then from property d.5, x∼ N(0, In).

The next algorithm develops the procedure to draw from an arbitrary multivariate normal distribution:

algorithm d.13: random number generator for the multivariate normal distribution

1. calculate any matrix G such that GG′ = Σ. In practice, G is often chosen to be the Cholesky factor of
Σ.

2. draw a random vector z from the standard multivariate normal distribution: z∼ N(0, In).

3. set x = µ +Gz.

Then from property d.2, x is a random draw from x∼ N(µ,Σ).
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d.10. Matrix normal

Type: continuous

Notation: X ∼MN(M,Σ,Ω)

Parameters: M (n×m location matrix)
Σ (n×n scale matrix, symmetric and positive definite)
Ω (m×m scale matrix, symmetric and positive definite)

Support: X ∈ Rn×m, the set of n×m matrices of real numbers

pdf: f (X |M,Σ,Ω) = (2π)−nm/2|Σ|−m/2|Ω|−n/2exp
(
−1

2 tr
[
Ω−1(X−M)′Σ−1(X−M)

])
Kernel: f (X |M,Σ,Ω) ∝ exp

(
−1

2 tr
[
Ω−1(X−M)′Σ−1(X−M)

])
Normalizing constant: c = (2π)−nm/2|Σ|−m/2|Ω|−n/2

Mean: M

Variance: Var(vec(X)) = Ω⊗Σ

Median: M

Mode: M

Diffuse distribution: set M = 0, Σ=σ In and Ω=ωIm, with σ and ω scalars such that σ ,ω→∞ (proper
distribution)
or set f (X |M,Σ,Ω) ∝ 1 (improper distribution)

Related distributions: Multivariate normal: if m = 1, then x∼ N(µ,Σ)

Normal: if n = 1 and m = 1, then x∼ N(µ,σ)

Table d.10: Summary of the Matrix normal distribution
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The matrix normal distribution represents a generalization of the multivariate normal distribution to n×m
random matrices. It is a rather uncommon distribution, and deriving its properties is not trivial. Most of
the treatment in this section comes from Gupta and Nagar (2000), chapter 2.

Compared to its univariate and multivariate counterparts, the matrix normal distribution adds an additional
column dimension of size m. The location matrix M represents the mean of the distribution. Also, just
the same way the Σ matrix represents the row covariances for the multivariate normal distribution, the Ω

matrix defines the column covariances for the matrix normal. When m = 1, the matrix normal degenerates
into a multivariate normal distribution, and when m = n = 1, it becomes a simple normal distribution.

There exists a general equivalence between the matrix normal and multivariate normal distribution. Some
authors actually use this feature as a definition for the matrix normal distribution. This is stated in the
following property:

property d.6: the random variable X is a random variable with: X ∼MN(M,Σ,Ω) if and only if vec(X)
is a random variable with: vec(X)∼ N(vec(M),Ω⊗Σ).

The second property represents the equivalent of the affine property for the multivariate normal distribu-
tion.

property d.7: let X be a random variable with: X ∼ MN(M,Σ,Ω); let A,B and C be matrices such that
AXB+C is defined, with A and B of maximum rank n and m respectively. Then:

AXB+C ∼MN(AMB+C, AΣA′,B′ΩB)

The third property is related to the marginal distributions of matrix normal random variables:

property d.8: let X be a random variable with: X ∼MN(M,Σ,Ω). Let X , M, Σ and Ω be partitioned the
following ways:

X =


X11 X12 . . . X1q

X21 X22 . . . X2q
...

...
. . .

...
Xp1 Xp2 . . . Xpq


n1

n2

...
np

m1 m2 ... mq

M =


M11 M12 . . . M1q

M21 M22 . . . M2q
...

...
. . .

...
Mp1 Mp2 . . . Mpq


n1

n2

...
np

m1 m2 ... mq

Σ =


Σ11 Σ12 . . . Σ1p

Σ21 Σ22 . . . Σ2p
...

...
. . .

...
Σp1 Σp2 . . . Σpp


n1

n2

...
np

n1 n2 ... np

Ω =


Ω11 Ω12 . . . Ω1q

Ω21 Ω22 . . . Ω2q
...

...
. . .

...
Ωq1 Ωq2 . . . Ωqq


m1

m2

...
mq

m1 m2 ... mq

with n1 +n2 + . . .+np = n, and m1 +m2 + . . .+mq = m.

Then Xi j ∼MN(Mi j, Σii, Ω j j), for all partitions i = 1,2, . . . , p, and all partitions j = 1,2, . . . ,q.

This property states that any subset of a matrix normal distribution is itself matrix normal, with the mean
and variance parameters defined in accordance with the considered partition. When the partition is re-
alised at the entry level, one obtains that every individual entry of a matrix normal distribution follows a
univariate normal distribution.

property d.9: let X be a random variable with: X ∼MN(M,Σ,Ω). Then:
xi j ∼ N(mi j,σiiω j j) , for all i = 1,2, . . . , p, and all j = 1,2, . . . ,q.
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Finally, the following algorithms introduce the procedures to generate pseudo random numbers from the
matrix normal distribution. First, the next algorithm considers the generation of random numbers from
the standard matrix normal distribution.

algorithm d.14: random number generator for the standard matrix normal distribution

1. draw a nm-dimensional vector x from the standard multivariate normal distribution: x∼ N(0, Inm).

2. rearrange x into the n×m matrix X .

Then from property d.6, X is a random draw from X ∼MN(0, In, Im).

The next algorithm develops the procedure to draw from an arbitrary matrix normal distribution:

algorithm d.15: random number generator for the matrix normal distribution

1. calculate any matrix G such that GG′ = Σ, and any matrix H such that HH ′ = Ω. In practice, G and H
are often chosen to be the Cholesky factors of Σ and Ω.

2. draw a random matrix Z from Z ∼MN(0, In, Im).

3. calculate X = M+GZH ′.

Then from property d.7, X is a random draw from X ∼MN(M,Σ,Ω).



62 CHAPTER D. STATISTICAL DISTRIBUTIONS

d.11. Student
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Type: continuous

Notation: x∼ T (µ,σ ,ν)

Parameters: µ (location, scalar)
σ (scale, scalar with σ > 0)
ν (degrees of freedom, scalar with ν > 0)

Support: x ∈ R

pdf: f (x|µ,σ ,ν) =
Γ( ν+1

2 )
Γ( ν

2 )
(νπσ)−1/2

(
1+ 1

ν

(x−µ)2

σ

)−(ν+1)/2

Γ(z) is the Gamma function, with Γ(z) =
∫

∞

0 tz−1e−tdt

Kernel: f (x|µ,σ ,ν) ∝

(
1+ 1

ν

(x−µ)2

σ

)−(ν+1)/2

Normalizing constant: c =
Γ( ν+1

2 )
Γ( ν

2 )
(νπσ)−1/2

Mean: µ for ν > 1, else undefined

Variance: ν

ν−2 σ for ν > 2, else undefined

Median: µ

Mode: µ

Diffuse distribution: set µ = 0 and σ → ∞ (proper distribution)
or set f (x|µ,σ ,ν) ∝ 1 (improper distribution)

Related distributions: Normal: if x∼ T (µ,σ ,ν) and ν → ∞, then approximately x∼ N(µ,σ)

Table d.11: Summary of the Student distribution
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The student distribution (sometimes called the Student’s t distribution or simply the t distribution) shares
much with the normal distribution. It is symmetric around its mean represented by the location parameter
µ , and it is also bell-shaped. One fundamental difference with the normal distribution is that the Student
distribution has a fat tail. This means the the peak of the distribution is less pronounced, while the tails
of the distribution (the extremities) are thicker. As a consequence, values far away from the mean have
a higher probability to happen than with the normal distribution. This makes the Student distribution
suitable for random variables with higher probabilities of rare events. Typical applications are found in
finance, to model for instance classes of assets for which high returns or losses occur more frequently than
for other assets.

How fat the tails of the distribution are is determined by the parameter ν called the degrees of freedom.
The smaller ν , the fatter the tails and the higher the probability of obtaining values far away from the
mean. Conversely, the larger ν , the more limited will be the fatness of the tails. A famous property of the
Student distribution is that as ν→∞ the Student distribution T (µ,σ ,ν) converges to a Normal distribution
N(µ,σ). The limiting case ν → ∞ can then be interpreted as a situation where the additional fatness of
the tail has been completely eliminated, turning the Student distribution into its Normal counterpart. This
is illustrated by Figure d.13.
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Figure d.13: Fatness of the student distribution TTT (((000,,,111,,,ννν))) (grey curve is NNN(((000,,,111))))

The final parameter σ known as the scale parameter is not directly interpretable as the variance of the dis-
tribution. While larger values of σ do imply a larger variance, the complete variance value is determined
by both σ and the degrees of freedom ν . Smaller values of ν imply a larger variance of the distribution,
consistently with the fact that the degrees of freedom determine the fatness of the distribution. Only when
ν → ∞ does the variance tend to σ , the variance of the Normal distribution. This once again reflects
convergence of the Student distribution to the Normal distribution as ν → ∞.

Similarly to the normal distribution, the Student distribution has the following affine property:

property d.10: let x be a random variable with: x∼ T (µ,σ ,ν), and let y = ax+b. Then:
y∼ T (aµ +b,a2σ ,ν).
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The following algorithm introduces the procedure to generate pseudo random numbers from the standard
Student distribution.

algorithm d.16: random number generator for the standard Student distribution

1. draw a random number s from s∼ IG(ν

2 ,
ν

2 ).

2. draw a random number x from x∼ N(0,s).

Then x is a random draw from x∼ T (0,1,ν).

The next algorithm develops the procedure to draw from an arbitrary Student distribution:

algorithm d.17: random number generator for the Student distribution

1. draw a random number z from z∼ T (0,1,ν).

2. set x =
√

σz+µ .

Then from property d.10, x is a random draw from x∼ T (µ,σ ,ν).
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d.12. Multivariate Student

Type: continuous

Notation: x∼ T (µ,Σ,ν)

Parameters: µ (n-dimensional location vector)
Σ (n×n scale matrix, symmetric and positive definite)
ν (degrees of freedom, scalar with ν > 0)

Support: x ∈ Rn, the set of n×1 vectors of real numbers

pdf: f (x|µ,Σ,ν) = Γ( ν+n
2 )

Γ( ν

2 )
(νπ)−n/2|Σ|−1/2

(
1+ 1

ν
(x−µ)′Σ−1(x−µ)

)−(ν+n)/2

Γ(z) is the Gamma function, with Γ(z) =
∫

∞

0 tz−1e−tdt

Kernel: f (x|µ,Σ,ν) ∝
(
1+ 1

ν
(x−µ)′Σ−1(x−µ)

)−(ν+n)/2

Normalizing constant: c =
Γ( ν+n

2 )
Γ( ν

2 )
(νπ)−n/2|Σ|−1/2

Mean: µ for ν > 1, else undefined

Variance: ν

ν−2 Σ for ν > 2, else undefined

Median: µ

Mode: µ

Diffuse distribution: set µ = 0 and Σ = σ In, with σ a scalar such that σ → ∞ (proper distribution)
or set f (x|µ,Σ,ν) ∝ 1 (improper distribution)

Related distributions: Student: if n = 1, then x∼ T (µ,σ ,ν)
Multivariate normal: if x∼ T (µ,Σ,ν) and ν → ∞ then approximately:
x∼ N(µ,Σ)

Table d.12: Summary of the multivariate Student distribution
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The multivariate Student distribution generalises the Student distribution to n-dimensional random vec-
tors, much the same way the multivariate normal generalises the univariate normal to random vectors. Its
mean is given by the location vector µ , while its variance and covariance are proportional to the diagonal
and off-diagonal terms of Σ, respectively. A change in any of these terms results in a change of the shape
of the density in a way that is similar to the multivariate normal.

The degrees of freedom ν affect the distribution just like they do for the univariate case: a smaller value
of ν increases the fatness of the tails, making values close to the mean less likely to occur, and values
further away more likely. Also, similarly to the univariate case, when ν → ∞, the multivariate Student
distribution converges to the multivariate normal distribution.

Similarly to the univariate case, there exists an affine property for the multivariate Student distribution:

property d.11: let x be a random variable with: x ∼ T (µ,Σ,ν). Let A be some matrix and b be some
vector such that y = Ax+b is defined. Then:
y∼ T (Aµ +b , AΣA′ , ν )

The second property states that the marginal distributions of a multivariate Student distribution are them-
selves Student:

property d.12: let x be a random variable with: x∼ T (µ,Σ,ν). Let x, µ and Σ be partitioned the following
way:

x =


x1

x2
...

xp


n1

n2

...
np

µ =


µ1

µ2
...

µp


n1

n2

...
np

Σ =


Σ11 Σ12 . . . Σ1p

Σ21 Σ22 . . . Σ2p
...

...
. . .

...
Σp1 Σp2 . . . Σpp


n1

n2

...
np

n1 n2 ... np

with n1 +n2 + . . .+np = n.

Then xi ∼ T (µi,Σii,ν), for all i = 1,2, . . . , p.

A corollary obtains when the partition is realised at the entry level, for then every individual entry of a
multivariate Student distribution follows a univariate Student distribution:

property d.13: let x be a random variable with: x∼ T (µ,Σ,ν). Then:
xi ∼ T (µi,Σii,ν) , for all i = 1,2, . . . ,n.
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The following algorithm introduces the procedure to generate pseudo random numbers from the standard
multivariate Student distribution.

algorithm d.18: random number generator for the standard multivariate Student distribution

1. draw a random number s from s∼ IG(ν

2 ,
ν

2 ).

2. draw a random vector x from x∼ N(0,sIn).

Then x∼ T (0, In,ν).

The next algorithm develops the procedure to draw from an arbitrary multivariate Student distribution:

algorithm d.19: random number generator for the multivariate Student distribution

1. calculate any matrix G such that GG′ = Σ. In practice, G is often chosen to be the Cholesky factor of
Σ.

2. draw a random number z from the standard multivariate Student distribution: z∼ T (0, In,ν).

3. set x = µ +Gz.

Then from property d.11, x is a random draw from x∼ T (µ,Σ,ν).
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d.13. Matrix Student

Type: continuous

Notation: X ∼MT (M,Σ,Ω,ν)

Parameters: M (n×m location matrix)
Σ (n×n scale matrix, symmetric and positive definite)
Ω (m×m scale matrix, symmetric and positive definite)
ν (degrees of freedom, scalar with ν > 0)

Support: X ∈ Rn×m, the set of n×m matrices of real numbers

pdf: f (X |M,Σ,Ω,ν) =
Γn( ν+n+m−1

2 )
Γn( ν+n−1

2 )
(νπ)−nm/2|Ω|−n/2|Σ|−m/2

×
∣∣Im + 1

ν
Ω−1(X−M)′Σ−1(X−M)

∣∣−(ν+n+m−1)/2

Γn(z) is the multivariate Gamma function, with Γn(z) = πn(n−1)/4
n

Π
i=1

Γ
(
z+ 1−i

2

)
Kernel: f (X |M,Σ,Ω,ν) ∝

∣∣Im + 1
ν

Ω−1(X−M)′Σ−1(X−M)
∣∣−(ν+n+m−1)/2

Normalizing constant: c =
Γn( ν+n+m−1

2 )
Γn( ν+n−1

2 )
(νπ)−nm/2|Ω|−n/2|Σ|−m/2

Mean: M

Variance: Var(vec(X)) = ν

ν−2(Ω⊗Σ) for ν > 2, else undefined

Median: M

Mode: M

Diffuse distribution: set M = 0, Σ=σ In and Ω=ωIm, with σ and ω scalars such that σ ,ω→∞ (proper
distribution)
or set f (X |M,Σ,Ω,ν) ∝ 1 (improper distribution)

Related distributions: Multivariate Student: if m = 1, then X ∼ T (µ,Σ,ν)
Student: if n = 1 and m = 1, then x∼ T (µ,σ ,ν)
Matrix normal: if X ∼MT (M,Σ,Ω,ν) and ν → ∞ then approximately:
X ∼MN(M,Σ,Ω)

Table d.13: Summary of the matrix Student distribution
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The matrix Student distribution generalises the multivariate Student distribution to n×m-dimensional
matrices, much the same way the matrix normal distribution generalises the multivariate normal to normal
random matrices. There exist several different parameterisations for the matrix Student distribution (see
for instance Dickey (1967), Box and Tiao (1973) and Gupta and Nagar (2000) for an overview of the
different formulations), which complicates the analysis. The parameterisations retained in this manual is
that of Gupta and Nagar (2000), slightly adapted to make it consistent with the formulation of the other
Student and normal distributions. See Appendix at the end of the section for additional details.

The location parameter M represents the mean of the distribution, while the row and column covariances
obtains from the two scale matrices Σ and Ω. The degrees of freedom ν define the fatness of the tails,
lower values of ν implying higher probabilities in the tails. Reducing the column dimension m to 1 turns
the distribution into a multivariate Student, while reducing both the column and rows dimensions m and n
to 1 collapses it to a univariate Student dimension. Finally, as the degrees of freedom ν tends to infinity,
the matrix Student distribution converges to a matrix normal distribution.

Similarly to the other Student distributions, there exists an affine property for the matrix Student distribu-
tion.

property d.14: let X be a random variable with: X ∼MT (M,Σ,Ω,ν); let A,B and C be matrices such that
AXB+C is defined, with A and B of maximum rank n and m respectively. Then:
AXB+C ∼MT (AMB+C,AΣA′,B′ΩB,ν).

The next property derives the marginal distributions of the matrix Student distribution.

property d.15: let X be a random variable with: X ∼MT (M,Σ,Ω,ν). Let X , M, Σ and Ω be partitioned
the following ways:

X =


X11 X12 . . . X1q

X21 X22 . . . X2q
...

...
. . .

...
Xp1 Xp2 . . . Xpq


n1

n2

...
np

m1 m2 ... mq

M =


M11 M12 . . . M1q

M21 M22 . . . M2q
...

...
. . .

...
Mp1 Mp2 . . . Mpq


n1

n2

...
np

m1 m2 ... mq

Σ =


Σ11 Σ12 . . . Σ1p

Σ21 Σ22 . . . Σ2p
...

...
. . .

...
Σp1 Σp2 . . . Σpp


n1

n2

...
np

n1 n2 ... np

Ω =


Ω11 Ω12 . . . Ω1q

Ω21 Ω22 . . . Ω2q
...

...
. . .

...
Ωq1 Ωq2 . . . Ωqq


m1

m2

...
mq

m1 m2 ... mq

with n1 +n2 + . . .+np = n, and m1 +m2 + . . .+mq = m.

Then Xi j ∼MT (Mi j,Σii,Ω j j,ν), for all partitions i = 1,2, . . . , p, and all partitions j = 1,2, . . . ,q.

A corollary obtains when the partition is realised at the entry level, for then every individual entry of a
multivariate Student distribution follows a univariate Student distribution:

property d.16: let X be a random variable with: X ∼MT (M,Σ,Ω,ν). Then:
xi j ∼ T (mi j,Σii×Ω j j,ν), for all i = 1,2, ...,n, and all j = 1,2, ...,m.

The next property is a simple one, but it is useful for the purpose of numerical computations:

property d.17: let X be a random variable with: X ∼MT (M,Σ,Ω,ν). Then:
X ′ ∼MT (M′,Ω,Σ,ν).

The following algorithm introduces the procedure to generate pseudo random numbers from the standard
matrix Student distribution.
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algorithm d.20: random number generator for the standard matrix Student distribution

If m≤ n:

1. draw a m×m random matrix Φ from Φ∼ IW (ν +m−1,νIm).

2. draw a random matrix X from X ∼MN(0, In,Φ).

Else, if m > n:

1. draw a n×n random matrix Φ from Φ∼ IW (ν +n−1,νIn).

2. draw a random matrix Y from Y ∼MN(0, Im,Φ).

3. set X = Y ′.

Then X ∼MT (0, In, Im,ν).

The separate treatment of the two cases m ≤ n and m > n guarantees that the Inverse Wishart draw is
realised on the smallest dimension of X , in order to maximise efficiency. The case m > n is obtained by
direct application of property d.17. The final algorithm develops the procedure to draw from an arbitrary
matrix Student distribution.

algorithm d.21: random number generator for the matrix Student distribution

1. calculate any matrix G such that GG′ = Σ, and any matrix H such that HH ′ = Ω. In practice, G and H
are often chosen to be the Cholesky factors of Σ and Ω.

2. draw a random matrix Z from Z ∼MT (0, In, Im,ν).

3. calculate X = M+GZH ′.

Then from property d.14, X is a random draw from X ∼MT (M,Σ,Ω,ν).
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Appendix: details of the derivations for the matrix Student distribution

The main reference for the matrix Student definition is Gupta and Nagar (2000), chapter 4. These authors
provide the following definition for the density of the matrix Student definition:

The n×m random matrix X is said to have a matrix variate t-distribution with parameters M,Σ,Ω and ν

if its p.d.f is given by:

f (X |M,Σ,Ω,ν) =
Γn( ν+n+m−1

2 )
Γn( ν+n−1

2 )
π−nm/2|Ω|−n/2|Σ|−m/2

∣∣Im +Ω−1(X−M)′Σ−1(X−M)
∣∣−(ν+n+m−1)/2

The are two main shortcomings associated with this definition. First, it is not consistent with the standard
definitions of the multivariate and univariate Student definitions. That is, setting the column dimension m
to 1 will not produce the multivariate Student density given in Table d.12, and reducing both the column
dimension m and the row dimension n to 1 will not produce the univariate Student density given in Table
d.11. Second, the distribution will not properly converge to its normal counterpart. Indeed, in the limiting
case where the degrees of freedom ν tend to infinity, the Student distributions (univariate and multivariate)
converge to a normal distribution. That is, as ν → ∞, one has T (µ,σ ,µ)→ N(µ,σ) and T (µ,Σ,µ)→
N(µ,Σ). One would then also expect that ν → ∞ implies MT (M,Σ,Ω,µ)→MN(M,Σ,Ω), but with the
definition provided by Gupta and Nagar (2000) this is not the case due to improper formulation of the
degrees of freedom.

For these reasons, this manual substitutes the following formulation for the density:

f (X |M,Σ,Ω,ν) =
Γn( ν+n+m−1

2 )
Γn( ν+n−1

2 )
(νπ)−nm/2|Ω|−n/2|Σ|−m/2

∣∣Im + 1
ν

Ω−1(X−M)′Σ−1(X−M)
∣∣−(ν+n+m−1)/2

Unlike the formulation of Gupta and Nagar (2000), the above formulation is consistent with the other
classes of Student distributions, and it does converge properly to the matrix normal distribution when
ν → ∞. However it is not a standard formulation of the distribution and its properties have not been
studied extensively. By contrast, Gupta and Nagar (2000) provide a thorough treatment of the distribution
under their formulation. Fortunately, it is trivial to create an equivalence between the two definitions, by
noting the following fact:

f (X |M,Σ,Ω,ν) =
Γn( ν+n+m−1

2 )
Γn( ν+n−1

2 )
(νπ)−nm/2|Ω|−n/2|Σ|−m/2

∣∣Im + 1
ν

Ω−1(X−M)′Σ−1(X−M)
∣∣−(ν+n+m−1)/2

=
Γn( ν+n+m−1

2 )
Γn( ν+n−1

2 )
π−nm/2|νΩ|−n/2|Σ|−m/2

∣∣Im +(νΩ)−1(X−M)′Σ−1(X−M)
∣∣−(ν+n+m−1)/2

(using properties m.11 and m.14)

=
Γn( ν+n+m−1

2 )
Γn( ν+n−1

2 )
π−nm/2|Ω̃|−n/2|Σ|−m/2

∣∣Im + Ω̃−1(X−M)′Σ−1(X−M)
∣∣−(ν+n+m−1)/2

defining Ω̃ = νΩ

It can then be seen that the formulation adopted in this manual is equivalent to the matrix Student distri-
bution of Gupta and Nagar (2000) parameterised as f (X |M,Σ,Ω̃,ν).

Following, all the properties developed in Gupta and Nagar (2000) apply to the present definition after
a trivial adjustment in the definition of the parameters. For instance, Theorem 4.3.1 in Gupta and Nagar
(2000) states:

Var(vec(X)) = 1
n−2(Ω⊗Σ)

Using Ω̃ in place of Ω, one obtains that for the definition used in this manual:

Var(vec(X)) = 1
ν−2(Ω̃⊗Σ) = 1

ν−2(νΩ⊗Σ) = ν

ν−2(Ω⊗Σ) ()using property m.41)

Any other property can be derived in a similar fashion.
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d.14. Truncated normal

-5 0 5
0

0.25
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Type: continuous

Notation: x∼ N̄(µ,σ ,a,b)

Parameters: µ (location, scalar)
σ (scale, scalar with σ > 0)
a (lower bound, scalar)
b (upper bound, scalar with b≥ a)

Support: x ∈ [a,b]

pdf: f (x|µ,σ ,a,b) = (Φ(β )−Φ(α))−1 (2πσ)−1/2exp
(
−1

2
(x−µ)2

σ

)
1(a≤ x≤ b)

Φ(x) is the cumulative distribution function of the standard normal distribution
α = (a−µ)/

√
σ β = (b−µ)/

√
σ

Kernel: f (x|µ,σ) ∝ exp
(
−1

2
(x−µ)2

σ

)
1(a≤ x≤ b)

Normalizing constant: c = (Φ(β )−Φ(α))−1 (2πσ)−1/2

Mean: µ−
√

σ
φ(β )−φ(α)
Φ(β )−Φ(α)

φ(x) is the probability density function of the standard normal distribution

Variance: σ

(
1− βφ(β )−αφ(α)

Φ(β )−Φ(α) −
[

φ(β )−φ(α)
Φ(β )−Φ(α)

]2
)

Median: µ +
√

σ Φ−1
(

Φ(α)+Φ(β )
2

)
Mode: a if µ < a , µ if a≤ x≤ b , b if µ > b

Diffuse distribution: –

Related distributions: Normal: if a =−∞ and b = ∞, then x∼ N(µ,σ)

Table d.14: Summary of the truncated normal distribution
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As the name indicates, the truncated normal distribution is similar to the normal distribution except that
its support is truncated. This can be useful to model real life phenomena that roughly follow a normal
distribution, but over a finite support. For instance, to model the probability that a fliiped coin yields
“heads”, one may want to use a normal distribution centered at 0.5, but with a truncation over the [0,1]
interval.

The truncated normal distribution is defined by 4 parameters. The lower bound a and the upper bound b
define the limits of the support. By playing over these parameters, one can handle a wide variety of shapes
and turn the truncated normal distribution into a very flexible device. This is illustrated in Figure d.14.
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Figure d.14: Different shapes of the truncated normal distribution

Unlike the normal distribution, the parameters µ and σ do not represent the mean and variance of the
truncated normal distribution. The truncation acts as a disturbances that shifts these parameters by an
amount determined by the parameters a and b.

There exist many different algorithms to generate pseudo-random numbers from the truncated normal
distribution. Their efficiency usually depends on where the truncation is defined, and thus which part of
the normal distribution the algorithm must sample from (the centre or the tails). The algorithm proposed
here is due to Robert (1995). It is quite efficient, whatever the way the truncation is applied.

algorithm d.22: random number generator for the truncated normal distribution

1. draw w from w∼U(a,b).

2. compute:
z = exp(−w2/2) if 0 ∈ [a,b]
z = exp((b2−w2)/2) if b < 0
z = exp((a2−w2)/2) if a > 0

3. draw u from u∼U(0,1), and set x = w if u < z; otherwise return to step 1.

Then x is a random draw from x∼ N̄(0,1,a,b).

To draw from an arbitrary distribution N̄(µ,σ ,a,b), the following algorithm can be used.

algorithm d.23: random number generator for the truncated normal distribution

1. define α = (a−µ)/
√

σ and β = (b−µ)/
√

σ .

2. draw z from z∼ N̄(0,1,α,β ).

3. set x = µ +
√

σz.

Then x is a random draw from x∼ N̄(µ,σ ,a,b).
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d.15. Gamma

0 5 10 15
0

0.25
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Type: continuous

Notation: x∼ G(a,b)

Parameters: a (shape, scalar with a > 0)
b (scale, scalar with b > 0)

Support: x ∈ [0,∞)

pdf: f (x|a,b) = b−a

Γ(a)x
a−1exp

(
− x

b

)
Γ(z) is the Gamma function, with Γ(z) =

∫
∞

0 tz−1e−tdt

Kernel: f (x|a,b) ∝ xa−1exp
(
− x

b

)
Normalizing constant: c = b−a

Γ(a)

Mean: ab

Variance: ab2

Median: ≈ ab 3a−0.8
3a+0.2

Mode: (a−1)b for a≥ 1

Diffuse distribution: set a→ 0 and b→ ∞ (proper distribution)
or set f (x|a,b) ∝

1
x (improper distribution)

Related distributions: Exponential: if x∼ G(1,1/λ ), then x∼ Exp(λ )
Chi-squared: if x∼ G(ν/2,2), then x∼ χ2(ν)
Inverse gamma: if x∼ G(a,b), then 1/x∼ IG(a,1/b)
Normal: if x∼ G(a,b), and a→ ∞, then approximately x∼ N(ab,ab2)

Table d.15: Summary of the gamma distribution
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The gamma distribution takes only positive values. In this respect it can be used to model any random
event resulting in positive quantities, which gives it a very wide range of applications. It can be used for
instance to model physical quantities (the amount of rainfall in a given country over a year), time durations
(the amount of time before a factory machine defects), amounts of money (the amount of insurance claims
after a natural disaster), and so on.

The distribution is defined by two parameters: the shape parameter a, and the scale parameter b. The
shape parameter a determines the overall shape of the distribution. Smaller values of a increase positive
skewness, attributing more probability to values around the origin and less weight to values further away.
As a gets larger, the distribution gets more and more bell-shaped and symmetric. This is depicted in
Figure d.15:
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Figure d.15: Impact of the shape parameter aaa on the gamma distribution (scale bbb === 111)

The scale parameter b on the other hand represents the overall scale of the function. Smaller values of b
squeeze the distribution while larger values of b stretch it, without affecting the shape of the distribution.
This is illustrated in Figure d.16:
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Figure d.16: Impact of the scale parameter bbb on the gamma distribution (shape aaa === 111000)

A useful consequence of the effect of the scale parameter is the following property.

property d.18: let x be a random variable with: x∼ G(a,b), and let c > 0 be some scalar. Then:
cx∼ G(a,cb).

Also, combining the effects of the two parameters a and b, it is easy to generate a gamma distribution with
any desired pair of values for the mean and variance. This is stated in the following property:

property d.19: let x be a random variable with: x∼G(a,b). Let µ and σ respectively denote any desired
mean and variance for the distribution (with µ > 0 and σ > 0). Then these values can be obtained by
defining:

a = µ2

σ
and b = σ

µ
.
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The gamma distribution is related to a number of other distributions that appear either as limiting cases
or as special cases of the gamma distribution. For instance, for very large values of a the gamma distri-
bution approximates the normal distribution. Other well-known distributions appear as special cases of
the gamma. The exponential distribution with rate λ is a gamma distribution with a = 1 and b = 1

λ
, while

the Chi-squared distribution with degrees of freedom ν is a gamma distribution with a = ν

2 and b = 2.
Because these distributions arise a special cases of the gamma distribution, their properties can be directly
derived from those of the gamma distribution.

There exist a number of algorithms to generate pseudo-random numbers from the Gamma distribution.
The following algorithm is due to Marsaglia and Tsang (2000a). It is widely used for its efficiency and
simplicity.

algorithm d.24: random number generator for the gamma distribution (((aaa≥≥≥ 111)))

1. set d = a−1/3 and c = 1/
√

9d.

2. generate x∼ N(0,1).

3. generate v = 1+ cx.

4. if v > 0, set v = v3 and generate u∼U(0,1); otherwise go back to 2.

5. if u < 1−0.0331x4, set y = dv; then y∼ G(a,1).

6. else, if log(u)< 0.5x2 +d(1− v+ log(v)), set y = dv; then y∼ G(a,1).

7. else, go back to 2.

The algorithm only works whenever a ≥ 1. If a < 1, Marsaglia and Tsang (2000a) propose a simple
transformation.

algorithm d.25: random number generator for the gamma distribution (((aaa <<< 111,,,bbb === 111)))

1. generate a random number z from z∼ G(a+1,1), using algorithm d.24.

2. generate u∼U(0,1).

3. define y = zu1/a; then y∼ G(a,1).

Finally, to obtain a random number from a gamma distribution with arbitrary b value, the following
algorithm is used.

algorithm d.26: random number generator for the gamma distribution (((aaa,,,bbb)))

1. generate a random number z from z∼ G(a,1).

2. set x = by.

Then from property d.18, x∼ G(a,b).
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d.16. Wishart

Type: continuous

Notation: X ∼W (ν ,S)

Parameters: ν (degrees of freedom, scalar with ν ≥ n)
S (n×n scale matrix, symmetric and positive definite)

Support: X ∈ Sn
++ , the set of n×n positive definite matrices

pdf: f (X |ν ,S) = 2−νn/2

Γn( ν

2 )
|S|−ν/2|X |(ν−n−1)/2exp

(
−1

2 tr
{

XS−1
})

Kernel: f (X |ν ,S) ∝ |X |(ν−n−1)/2exp
(
−1

2 tr
{

XS−1
})

Normalizing constant: c = 2−νn/2

Γn( ν

2 )
|S|−ν/2

Mean: νS

Variance: Var(xi j) = ν(s2
i j + siis j j)

Median: no simple analytical form

Mode: (ν−n−1)S for ν ≥ n+1, else undefined

Diffuse distribution: set ν = n and S = sIn, with s a scalar such that s→ ∞ (proper distribution)
or set f (X |ν ,S) ∝ |X |−(n+1)/2 (improper distribution)

Related distributions: Gamma: if n = 1, then X ∼ G
(

ν

2 ,
S
2

)
Inverse Wishart: if X ∼W (ν ,S), then X−1 ∼ IW (ν ,S−1)

Table d.16: Summary of the Wishart distribution
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The Wishart distribution generalizes the Gamma distribution to n× n positive definite matrices. It is
characterised by two parameters, the degrees of freedom ν , and the scale S. The degrees of freedom ν are
comparable to the shape parameter a of the gamma distribution, and determine the overall shape of the
density function. The interpretation of scale matrix S is similar to its scalar counterpart b in the gamma
distribution: an increase in the values of S increase the spread of the distribution by stretching the density,
while smaller values in S reduce it. Also, consistently with the gamma distribution which produces only
positive scalar values, the Wishart distribution only produces positive definite matrices.

Because its support is the set of positive definite matrices with positive diagonal terms and unrestricted off-
diagonal terms, typical applications of the Wishart distribution consist in the analysis of the distribution
of variance-covariance matrices.

When the degrees of freedom ν is integer, it is possible to define the Wishart distribution directly as
follows.

property d.20: let A be a n×ν matrix of independently drawn standard normal random numbers:
ai j ∼ N(0,1). Let X = AA′. Then: X ∼W (ν , In).

The Wishart distribution has the following affine property:

property d.21: let X be a n× n matrix with: X ∼W (ν ,S). Let A be a matrix of maximum rank n such
that AXA′ is defined. Then: AXA′ ∼W (ν ,ASA′).

the following algorithms introduce different procedures to generate pseudo random numbers from the
Wishart distribution. When the degrees of freedom ν is integer, a first option consists in using brute
strength, using property d.20 as a direct definition of a Wishart draw:

algorithm d.27: random number generator for the Wishart distribution, ννν integer

1. generate a n×ν matrix A of independent standard normal random numbers: ai j ∼ N(0,1).

2. set Z = AA′; then from property d.20, Z ∼W (ν , In).

3. calculate any matrix G such that GG′ = S. In practice, G is often chosen to be the Cholesky factor of S.

4. set X = GZG′; then from property d.21, Z ∼W (ν ,S).

This algorithm can only be used for integer degrees of freedom. It also becomes slow whenever ν is
integer but large. In this case, one has to rely on alternative methods. The following algortihm is due to
Bartlett (1934). It is known as the Bartlett decomposition of the Wishart distribution.

algorithm d.28: random number generator for the general Wishart distribution

1. initiate the matrix A as a n×n matrix of zeros.

2. diagonal terms: for i = 1,2, . . . ,n, generate aii =
√

z, with z∼ χ2(ν +1− i).

3. off-diagonal terms: for i = 1,2, . . . ,n and j < i, generate ai j from ai j ∼ N(0,1).

4. set Z = AA′; then Z ∼W (ν , In).

5. calculate any matrix G such that GG′ = S. In practice, G is often chosen to be the Cholesky factor of S.

6. set X = GZG′; then from property d.21, Z ∼W (ν ,S).



79

d.17. Inverse gamma
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Type: continuous

Notation: x∼ IG(a,b)

Parameters: a (shape, scalar with a > 0)
b (scale, scalar with b > 0)

Support: x ∈ [0,∞)

pdf: f (x|a,b) = ba

Γ(a)x
−a−1exp

(
−b

x

)
Γ(z) is the Gamma function, with Γ(z) =

∫
∞

0 tz−1e−tdt

Kernel: f (x|a,b) ∝ x−a−1exp
(
−b

x

)
Normalizing constant: c = ba

Γ(a)

Mean: b
a−1 for a > 1

Variance: b2

(a−1)2(a−2) for a > 2

Median: ≈ b(3a+0.2)
a(3a−0.8)

Mode: b
a+1

Diffuse distribution: set a→ 0 and b→ 0 (proper distribution)
or set f (x|a,b) ∝

1
x (improper distribution)

Related distributions: Gamma: if x∼ IG(a,b), then 1/x∼ G(a,1/b)

Table d.17: Summary of the inverse gamma distribution
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The inverse gamma distribution can be directly defined as the distribution that obtains from the reciprocal
of the gamma distribution.

property d.22: let x be a random variable with: x∼ G(a,b). Then: 1
x ∼ IG(a, 1

b).

Similarly to the gamma distribution, the support of the inverse gamma distribution consists in the set of
positive real numbers. The shape parameter a also determines the overall shape of the distribution. As
a increases, the distribution concentrates higher probabilities on small values. This is the converse of
the regular gamma distribution which attributes more weight to small values when a decreases, and this
results directly from the inverse gamma being the reciprocal of the gamma distribution. This is illustrated
by Figure d.17:
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Figure d.17: Impact of the shape parameter aaa on the inverse gamma distribution (scale bbb === 111)

The second parameter of the distribution, the scale parameter b, determines the overall spread of the
function. Its behaviour is similar to that of the regular gamma distribution: smaller values of b squeeze
the distribution, while larger values stretch it, without affecting the shape of the distribution. This is
illustrated by Figure d.18:
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Figure d.18: Impact of the scale parameter bbb on the inverse gamma distribution (shape aaa === 333)

Similarly to the gamma distribution, it is possible to play on the impact of the shape and scale parameters
a and b to implement any desired pair of values for the mean and variance of the distribution.

property d.23: let x be a random variable with: x ∼ IG(a,b). Let µ and σ respectively denote any
desired mean and variance for the distribution (with µ > 0 and σ > 0). Then these values can be obtained
by defining:

a = µ2

σ
+2 and b = µ

(
µ2

σ
+1
)

.
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The following algorithm introduces the procedures to generate pseudo random numbers from the inverse
gamma distribution.

algorithm d.29: random number generator for the inverse gamma distribution

1. draw a random number z from z∼ G
(
a, 1

b

)
.

2. set x = 1
z .

Then from property d.22, x∼ IG(a,b).
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d.18. Inverse Wishart

Type: continuous

Notation: X ∼ IW (ν ,S)

Parameters: ν (degrees of freedom, scalar with ν ≥ n)
S (n×n scale matrix, symmetric and positive definite)

Support: X ∈ Sn
++ , the set of n×n positive definite matrices

pdf: f (X |ν ,S) = 2−νn/2

Γn( ν

2 )
|S|ν/2|X |−(ν+n+1)/2exp

(
−1

2 tr
{

X−1S
})

Kernel: f (X |ν ,S) ∝ |X |−(ν+n+1)/2exp
(
−1

2 tr
{

X−1S
})

Normalizing constant: c = 2−νn/2

Γn( ν

2 )
|S|ν/2

Mean: S
ν−n−1 ν > n+1

Variance: Var(xi j) =
(ν−n+1)s2

i j+(ν−n−1)siis j j

(ν−n)(ν−n−1)2(ν−n−3) ν > n+3

Median: no simple analytical form

Mode: S
ν+n+1

Diffuse distribution: set ν = n and S = sIn, with s a scalar such that s→ 0 (proper distribution)
or set f (X |ν ,S) ∝ |X |−(n+1)/2 (improper distribution)

Related distributions: Inverse gamma: if n = 1, then X ∼ IG
(

ν

2 ,
S
2

)
Wishart: if X ∼ IW (ν ,S), then X−1 ∼W (ν ,S−1)

Table d.18: Summary of the Inverse Wishart distribution
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The inverse Wishart generalises the inverse gamma distribution to n×n positive definite matrices, much
the same way the Wishart distribution generalises the gamma distribution. The relation linking the inverse
Wishart to the Wishart distribution is similar to that relating the gamma to the inverse gamma: the inverse
Wishart is the distribution that obtains when taking the inverse of a Wishart distribution.

property d.24: let X be a random variable with: X ∼W (ν ,S). Then: X−1 ∼ IW (ν ,S−1).

The distribution is characterised by two parameters: the degrees of freedom ν , and the scale matrix S. The
degrees of freedom ν represent the overall shape of the distribution, while the scale matrix S on the other
hand determines the spread of the distribution: small values of S squeeze the distribution, while larger
values stretch it.

There also exists an affine property for the inverse Wishart distribution.

property d.25: let X be a n× n matrix with: X ∼ IW (ν ,S). Let A be a matrix of maximum rank n such
that AXA′ is defined. Then: AXA′ ∼ IW (ν ,ASA′).

The following algorithms introduce the procedures to generate pseudo random numbers from the inverse
Wishart distribution, making use of the definition of the inverse Wishart distribution as the reciprocal of
the Wishart distribution. The first approach applies to integer degrees of freedom, using the brute strength
strategy.

algorithm d.30: random number generator for the inverse Wishart distribution, ννν integer

1. generate a n×ν matrix A of independent standard normal random numbers: ai j ∼ N(0,1).

2. set Z = (AA′)−1; then from property d.24, Z ∼ IW (ν , In).

3. calculate any matrix G such that GG′ = S. In practice, G is often chosen to be the Cholesky factor of S.

4. set X = GZG′; then from property d.25, Z ∼ IW (ν ,S).

When the degrees of freedom ν is large or not integer, one switches instead to the Bartlett decomposition.

algorithm d.31: random number generator for the general inverse Wishart distribution

1. initiate the matrix A as a n×n matrix of zeros.

2. diagonal terms: for i = 1,2, . . . ,n, generate aii =
√

z, with z∼ χ2(ν +1− i).

3. off-diagonal terms: for i = 1,2, . . . ,n and j < i, generate ai j from ai j ∼ N(0,1).

4. set Z = (AA′)−1; then Z ∼ IW (ν , In).

5. calculate any matrix G such that GG′ = S. In practice, G is often chosen to be the Cholesky factor of S.

6. set X = GZG′; then from property d.25, Z ∼ IW (ν ,S).
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d.19. Beta
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Type: continuous

Notation: x∼ Beta(a,b)

Parameters: a (shape, scalar with a > 0)
b (shape, scalar with b > 0)

Support: x ∈ [0,1]

pdf: f (x|a,b) = 1
B(a,b)x

a−1(1− x)b−1

B(z,w) is the Beta function, with B(z,w) = Γ(z)Γ(w)
Γ(z+w)

Kernel: f (x|a,b) ∝ x a−1(1− x)b−1

Normalizing constant: c = 1
B(a,b)

Mean: a
a+b

Variance: ab
(a+b)2(a+b+1)

Median: ≈ a−1/3
a+b−2/3 for a,b > 1

Mode: a−1
a+b−2 for a,b > 1

Diffuse distribution: set a→ 0 and b→ 0 (proper distribution)

Related distributions: Uniform: if x∼ Beta(1,1), then x∼U(0,1)

Table d.19: Summary of the Beta distribution
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The Beta distribution is a continuous distribution taking values over the closed interval [0,1]. In this
respect, it constitutes a natural candidate for any model representing probabilities or percentages. Typi-
cal applications include the probability of success for binary experiments (e.g. probability of obtaining
“heads” at a coin toss), and the estimation of percentages (e.g. percentage of students who will pass the
next examination).

The distribution is defined by two shape parameters a and b. The shape parameter a determines the
behaviour of the distribution on the left, and the shape parameter b determines its behaviour on the right.
Values of a or b below 1 curve the associated distribution tail upward, while values above 1 curve it
downward. Values of 1 represent the neutral case, and when both a and b take a unit value, the Beta
distribution degenerates into a uniform distribution. These features are illustrated by Figures d.19 and
d.20:
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(c) a = 3

Figure d.19: Impact of the shape parameter aaa on the left tail (shape bbb === 111)
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(a) b = 0.5
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(c) b = 3

Figure d.20: Impact of the shape parameter bbb on the right tail (shape aaa === 111)

By playing on the two parameters a and b, a wide variety of shapes is available for the distribution. When
a = b, the distribution is symmetric, while otherwise it is skewed. It is skewed to the left for a < b, and
skewed to the right for a > b, as illustrated by Figure d.21:
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(c) a = 6,b = 2

Figure d.21: Combinations of shapes aaa and bbb on the distribution
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Playing on the parameters a and b, it is possible to generate a Beta distribution satisfying a pair of desired
values for the mean and variance, if these values are compatible with the distribution. This is stated in the
following property:

property d.26: let x be a random variable with: x∼ Beta(a,b). Let µ and σ respectively denote a pair of
desired values for the distribution mean and variance (with 0 < µ < 1 and 0 < σ < 0.25). If this pair of
values is compatible with the distribution, it can be obtained by defining:

a = µ̄−σ(1+µ̄)2

σ(1+µ̄)3 and b = aµ̄ , µ̄ ≡ 1−µ

µ

the following algorithm introduces the procedure to generate pseudo random numbers from the Beta
distribution. The algorithm is standard, its motivation can be found for instance in Forbes et al. (2011).

algorithm d.32: random number generator for the Beta distribution

1. generate y from y∼ G(a,1).

2. generate z from z∼ G(b,1).

3. set x = y
y+z .

Then x∼ Beta(a,b).
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d.20. Dirichlet

Type: continuous

Notation: x∼ D(a1, . . . ,ak)

Parameters: a1, . . . ,an (concentration, scalars with ai > 0, i = 1, . . . ,n)

Support: x1, . . . ,xn ∈ [0,1], with
n

Σ
i=1

xi = 1

pdf: f (x1, . . . ,xn|a1, . . . ,an) =
1

B(a1,...,an)

n

Π
i=1

xai−1
i

B(z1, . . . ,zn) is the multivariate Beta function, with B(z1, . . . ,zn) =
Γ(z1)...Γ(zk)
Γ(z1+...+zn)

Kernel: f (x1, . . . ,xn|a1, . . . ,an) ∝

n

Π
i=1

xai−1
i

Normalizing constant: c = 1
B(a1,...,an)

Mean: E(xi) =
ai

a a =
n

Σ
i=1

ai

Variance: Var(xi) =
ai(a−ai)
a2(a+1)

Median: ≈ ai−1/3
a−2/3 , for ai > 1

Mode: ai−1
a−n , for ai > 1

Diffuse distribution: set a1, . . . ,an→ 0

Related distributions: Beta: if x∼ D(a1,a2), then x∼ Beta(a1,a2)

Table d.20: Summary of the Dirichlet distribution
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The Dirichlet distribution generalizes the Beta distribution to n-dimensional random vectors. While the
Beta distribution can be interpreted as producing probabilities or percentages of binary experiments, the
Dirichlet distribution expands this settings to experiments with n different outcomes or categories, labelled
as x1, . . . ,xn. For instance, a typical application of the Beta consists in determining the probability of
success for a coin flip, which represents a binary experiment with two outcomes: heads (success) and tails
(failure). A Dirichlet expansion might consist in studying the outcome of a 6-face die roll, determining
the probabilities of obtaining any of the faces. The 6 faces then constitute the 6 categories considered by
the distribution. Percentages can be treated in a similar way. While the Beta distribution can be used to
determine the percentage of student that will pass or fail the next examination (binary experiment), the
Dirichlet distribution can be used to determine the percentage of students corresponding to different grade
categories (A,B,C,D,E and F , representing 6 categories).

The Dirichlet distribution is consistent with the Beta distribution. While the Beta deals with binary experi-
ments and relies on a set of 2 shape parameters a and b, the Dirichlet considers n-categorical events with a
set of n concentration parameters a1, . . . ,an. The interpretation of these parameters is similar to that of the
Beta distribution. Smaller values of ai increase the concentration of probabilities on variable xi, curving
the distribution upward on the xi axis at the expense of other variables. Larger values of ai attribute less
weight to probabilities on xi and curve the distribution downward on the xi axis. This is illustrated by
Figure d.22:

(a) a1 = 1 (b) a1 = 2.5 (c) a1 = 5

Figure d.22: Impact of concentration aaa111 on the distribution (nnn === 333,,,aaa222 === aaa333 === 222...555)

The following algorithm introduces the procedure to generate pseudo random numbers from the Dirichlet
distribution. Motivations can be found for instance in Forbes et al. (2011):

algorithm d.33: random number generator for the Dirichlet distribution

1. generate z1, . . . ,zn from zi ∼ G(ai,1) , i = 1, . . . ,n.

2. for i = 1, . . . ,n, set xi =
zi
z , with z =

n

Σ
i=1

zi .

Then x = (x1, . . . ,xn) is a random draw from x∼ D(a1, . . . ,an).
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