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Foreword

Bayesian vector autoregressions have become the cornerstone of time-series econometrics. Despite the
need for these models, there exist to these days very few software applications. On the commercial
side, Eviews proposes some limited Bayesian VAR features since version 8. Only a few applications are
available and implementation comes as a blackbox. On the non-commercial side, I had the priviledge to
develop the BEAR toolbox when I was working at the European Central Bank, between 2014 and 2018.
BEAR is a Matlab-based software for Bayesian time-series econometrics proposing a wide range of state-
of-the art Bayesian econometric methodologies. It was initially developed internally to meet the needs
of the European Central Bank, but it quickly gained notoriety and has now become a reference tool for
many central banks and financial institutions across the world. BEAR remains to these days the most
comprehensive application in the field of Bayesian time-series econometrics.

Despite this success, I eventually became unsatisfied with BEAR. One reason is technical: BEAR is
developed under a simple functional programming paradigm. While working with functions only is fine
for a small project, this approach finds its limits for large software projects like BEAR. In this case,
proper object-oriented programming becomes a necessity to maintain efficient and well-structured code.
Considering this question, it eventually became apparent that the only solution was the creation of a new
software from scratch, built on the object-oriented paradigm.

The second reason is economical: BEAR is developed in Matlab, a mathematical language that remains
to these days dominant among economists and econometricians. Matlab is a great platform permitting
fast development and efficient execution of econometric applications, but it is also a commercial product.
Matlab licenses are expensive and not affordable to everyone. Using Matlab thus excludes de facto many
students and researchers, especially from emerging countries. In an era of fair opportunity and open
source projects, I think this situation is not an option anymore.

For these reasons, I developed a new software called Alexandria. Alexandria provides a solution to these
two issues. It is developed in pure object-oriented progamming, building a solid structure for long-term
development. Also, Alexandria comes in two flavours: a Matlab version for veteran econometricians; and
a Python version that offers a free, open source alternative that makes the product accessible to everyone,
regardless of financial constraints. The two versions are strictly similar, so that the user really can pick
whichever language is preferred.

A tribute to the ancient library of Alexandria, the name of the software reflects two main ideas. First, it
is a library – in the computer science sense of the term – providing codes, programmes and applications
for easy access to Bayesian time-series econometrics models. Second, it has the ambition of becoming
an extensive collection of knowledge – as was the library of Alexandria in its time – with the hope of
providing in the long run all the major models in the field of Bayesian time-series econometrics. I hope
that you will enjoy using Alexandria as much as I enjoyed developing it.

Romain Legrand
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CHAPTER 1

Installing Alexandria, Python edition

1.1 Python: an overview

Python is a high-level, interpreted, and general-purpose programming language. It owes its name to the
BBC TV show "Monty Python’s Flying Circus". It was initially designed in the late 1980’s by Guido
van Rossum at Centrum Wiskunde and Informatica in the Netherlands. It was first released in 1991 and
developed further by the Python Software Foundation.

Relatively marginal until the 2000’s, Python has been gaining in popularity since then. It represents today
one of the most widely used programming languages, aside with other popular languages such as C# or
Java. The Python community is estimated to more than 8 million users today.

There are several reasons which explain the success of Python. Python is powerful, yet one of the simplest
languages to learn. It emphasizes readibility and conciseness, making development considerably faster
under Python than under alternative frameworks. It is general, meaning it can be used to develop virtually
any kind of application. Thanks to these qualities, many world-class software companies have chosen
Python to write their applications, including Youtube, Google, Instagram, Netflix, Reddit, Spotify or
Quora, to name just a few.

Python has also become increasingly popular amongst the data science community, as major applications
were developed in Python or provided API to become Python-compatible. Scikit-Learn, TensorFlow,
Torch, Keras, Numpy, Pandas or Matplotlib are examples of widely used data science applications that
contributed to increase the popularity of Python among data scientists. While Matlab remains to these
days dominant in the econometrics community, there is no doubt that Python will also play an increasingly
important role in the field, making it a first-choice language for an open source econometrics software.

1.2 The Anaconda distribution

In theory, installing Python is straightforward. On the Python webpage, one can download the install file
for the latest release and then proceed to the installation. In practice however, this option is not recom-
mended. First, the basic Python installation is minimal and provides very little in terms of development
tools. The only available feature is a small programme called Idle (Figure 1.1) which is hardly more than
a raw Python console. Idle provides no code editor, no variable explorer and no graphic visualisation,
which makes it practically unusable for development purposes.

1

https://www.python.org/downloads/
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Figure 1.1: The Idle Python shell

Second, as any general programming language, base Python is extremely limited and requires additional
libraries to provide suitable functionalities. With a basic installation those libraries need to be installed
and maintained manually. This is impractical and creates a high risk of eventually generating conflicts
between libraries, which may completely ruin the whole installation.

For these reasons it is recommended to use instead a distribution called Anaconda, which has by now
become the industry standard. Anaconda is a free, open source software suite for scientific computing
suitable for Windows, Linux and macOS. Anaconda makes Python more accessible thanks to a simplified
Python installation and package management system.

Concretely, Anaconda does the following. First, it automatically installs Python 3 on the system, which
avoids any kind of manual installation. The distribution also comes with over 250 packages automatically
installed, comprising virtually any library that may be ever needed. Most importantly, it comes with its
own management system that automatically handles the libraries updates and conflicts.

Second, Anaconda comes with a suite of Python development softwares, including two great applications:
Spyder and Jupyter Notebook. Spyder (Figure 1.2) is a free and open-source integrated developement
environment (IDE) for Python. It provides a code editor (left panel), a Python console for interactive
execution (bottom right panel), and a variable/figure explorer (top right panel). Spyder provides everything
needed for editing, analysis, debugging and visualisation. It also comes close to Matlab and RStudio in
its design, so users of these programmes will find it easy to make the move to Python.

Jupyter Notebook (Figure 1.3) is a web-based environment for creating notebook documents containing
text, code, and data. It combines the features of a classical text editor with an interactive execution
environment allowing to execute code and display visual elements such as tables and figures. Jupyter
makes it easy to design clear and beautiful data science documents. While Spyder is primarily intended
for development, Jupyter is more suitable for the execution and visualisation of existing applications. In
the end however, both applications can be used to write and run Python programmes.
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Figure 1.2: The Spyder environment

Figure 1.3: A Jupyter notebook
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1.3 Anaconda installation on Windows

To install Anaconda on Windows, go to the Anaconda webpage (Figure 1.4). The page should automati-
cally propose to download the latest version corresponding to Windows. Click on the download button to
initiate the download of the installation file. Once download is completed, navigate to the folder contain-
ing the file (it should be the Downloads folder), and double-click on the file to start installation (Figure
1.5). Follow the steps and agree when prompted to eventually complete the setup. If you experience issues
in the process, you may consult the Anaconda webpage for Windows installation.

Figure 1.4: The Anaconda home page for Windows

Figure 1.5: Anaconda installation on Windows

Anaconda is now installed on your computer along with Python and all the libraries you need. However,
most of its material is outdated. As a final step, it is thus necessary to update the whole setup. To do so
we will use the conda terminal, a facility provided by Anaconda. To open the conda terminal, search for
"Anaconda prompt" in the Windows search bar (Figure 1.6, panel (a)). Then in the terminal, execute the
command (Figure 1.6, panel (b)):

conda update --all

https://www.anaconda.com/products/distribution
https://docs.anaconda.com/anaconda/install/windows/
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Agree when prompted and Anaconda will update Python and all the libraries, managing all possible
conflicts.

(a) Searching for the Anaconda prompt (b) Updating Anaconda

Figure 1.6: The Anaconda prompt

Finally, to open Spyder or Jupyter Notebook you can use the Anaconda navigator. To open it, search for
"Anaconda navigator" in the Windows search bar (Figure 1.7, panel (a)). Then in the navigator use the
"Launch" button of Jupyter or Spyder to start the application (Figure 1.7, panel (b)). Alternatively, you
may create shortcuts to launch these applications directly. In the Windows search bar, type "anaconda
navigator", "jupyter notebook" or "spyder", then right-click and choose "Pin to Start" or "Pin to taskbar".
You may also right-click and choose "Open file location", right-click the application icon in the folder and
select "Send to" > "Desktop (create shortcut)".

(a) Searching for the Anaconda navigator (b) The Anaconda navigator

Figure 1.7: The Anaconda navigator

1.4 Anaconda installation on Linux/macOS

As Linux and macOS are both based on Unix, they follow similar installation procedures. This section out-
lines the steps to follow, but for more details you may consult the Anaconda webpage for Linux installation,
or the Anaconda webpage for macOS installation.

To install Anaconda on Linux or macOS, go to the Anaconda webpage (Figure 1.8). The page should
automatically propose to download the latest version corresponding to Windows. Click on the download
button to initiate the download of the installation file, and wait until download is completed.

https://docs.anaconda.com/anaconda/install/linux/
https://docs.anaconda.com/anaconda/install/mac-os/
https://www.anaconda.com/products/distribution
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Figure 1.8: The Anaconda home page for Linux

The installation file is a bash file (a file with ".sh" extension). To execute it, we will use the terminal. If
you are unfamiliar with the terminal, simply type "terminal" in the application search bar 1.9) and click
the terminal icon to open a terminal.

Figure 1.9: Searching for the terminal in Linux

Once the terminal is open, search for the path of the folder where the installation file has been downloaded
(it should be the Downloads folder), and note the name of the installation file. Then in the terminal execute
the command:

bash path-to-folder/name-of-file

So for instance if the path to the folder containing the installation file is "∼/Downloads" and the installation
file is "Anaconda3-2021.11-Linux-x86_64.sh", then the command to execute is:

bash ∼/Downloads/Anaconda3-2021.11-Linux-x86_64.sh

Executing this command in the terminal (Figure 1.10) will start the installation, and instructions will
appear in the terminal. Follow the steps, agree when prompted and keep the default options to eventually
complete the setup.
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Figure 1.10: Executing the Anaconda bash install file

Anaconda is now installed on your computer along with Python and all the libraries you need. However,
most of its material is outdated. As a final step, it is thus necessary to update the whole setup. To do, open
a new terminal and execute the command (Figure 1.11):

conda update --all

Agree when prompted and Anaconda will update Python and all the libraries, managing all possible
conflicts.

Figure 1.11: Updating Anaconda

Finally, to open Spyder or Jupyter Notebook you can use the Anaconda navigator. To access it, open a
terminal and execute the command:

anaconda-navigator

This opens the navigator (Figure 1.12). You can then launch Jupyter Notebook or Spyder by pressing the
corresponding Launch buttons in the navigator.

You may also directly start Jupyter or Spyder from the terminal by executing the commands:

jupyter-notebook

or:

spyder
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Figure 1.12: The Anaconda navigator

1.5 Alexandria: local installation

There are two options to install Alexandria: a local install that consists in creating a local copy of the folder
containing the programmes for each of your projects, or a permanent install that installs the programme on
your system once for all. For beginners, it may be easier to use the local installation as it is straightforward
and more intuitive (one copy of the application is created for each project).

To proceed to a local install, you first need to recover the folder containing the Alexandria programmes.
There are two possibilities to do so. You can go to the Alexandria website, navigate to Downloads on the
left menu, and in the Toolbox section click on the link for the Python edition of the software (Figure 1.13).
This will donwload a zip file containing the toolbox programme folder.

Alternatively, you can visit the Github page of the project, click on the alexandria-python repo (it is a
public repository), then click on (Figure 1.14):

Code -> Download ZIP

In both cases, unzip the ZIP archive to obtain a folder named "alexandria-python". This is your local
install folder that contains all the programmes to run Alexandria. This folder also constitutes the basis of
your project folder (see section 3.1), so you can rename it the way you want to match your project name
and move it to any directory you wish. For instance, you may rename the folder "my_project" and place
it in D:\my_project (Figure 1.15).

https://alexandria-toolbox.github.io
https://github.com/alexandria-toolbox
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Figure 1.13: The Downloads page of the Alexandria website

Figure 1.14: The Github repo for the Python version of the toolbox
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Figure 1.15: The local install folder after renaming

1.6 Alexandria: permanent installation

To install Alexandria permanently, the most convenient option consists in using PyPi. PyPi is a web repos-
itory of softwares for the Python programming language. It permits easy installation of third-party projects
on personal computers. To install Alexandria from PyPi, first open a terminal. If your operating system is
Windows, open the conda terminal (refer to section 1.3). If your operating system is Linux/macOS, open
a regular terminal (refer to section 1.4). Then execute the command (Figure 1.16):

pip install alexandria-python

This will install alexandria on your computer. Note that you need an internet connection to proceed to the
installation from PyPi. Also, at any time, you may uninstall Alexandria by using the command:

pip uninstall alexandria-python

Figure 1.16: Installing Alexandria with pip

Once Alexandria is installed on your system, you can move to the creation of your project folder (section
3.1).



CHAPTER 2

Installing Alexandria, Matlab edition

2.1 Matlab: an overview

Matlab is a numerical software and programming language developed by the firm MathWorks. The name
is an abbreviation of "Matrix Laboratory", stressing the primary orientation of the language towards linear
algebra applications. Matlab was initially developed by Cleve Moler, a math professor at the University
of New Mexico, as a hobby for his students. The programme was initially a simple matrix calculator
distributed for free in universities. As popularity started growing, the programme got developed further
and was first released as a commercial product in 1984. As of today, Matlab has evolved to include many
features beyond linear algebra, including numerical optimization, symbolic algebra, statistical applica-
tions, algorithms and graphical visualisation. In 2020, Mathworks claims more than 4 million Matlab
users worldwide, mostly from the fields of engineering, science, and economics.

There are several reasons explaining the popularity of Matlab. First, as a software specialised in mathe-
matical applications, Matlab’s syntax proves simpler than that of general languages like Python. In fact, its
syntax is close to mathematical writing, making the language especially attractive for users with a scien-
tific background. Developing and testing in Matlab is also considerably faster than with other languages,
thanks to its simple and concise syntax.

Second, Matlab is powerful. It benefits from – litterally – decades of development, and its routines are
highly optimized. Matlab can prove several times faster than Python in numerical applications, which
represents a strong asset for computationally intensive programmes.

Third, Matlab benefits from Simulink, a graphical programming environment for modeling, simulating
and analyzing multidomain dynamical systems. Simulink is widely used in the scientific industry and
explains much of Matlab’s success within the engineering community.

For these reasons Matlab has been extensively used in diverse fields of engineering ranging from sig-
nal processing, image treatment and control systems to algorithmic finance, computational biology and
econometrics. Recently, Matlab has also tried to capitalize on the recent rise of data science, but it has
been facing fierce competition from open source languages such as Python.

On the downside, it should be noted that as a commercial product, Matlab requires the purchase of a
license which can prove quite expensive. A standard professional license costs $2150. For individual
users, Matlab proposes a Home license for $149. Students may benefit from the cheapest option with a
student license costing $49 (these prices may vary depending on which country you live). For more details
on licensing, you may consult the Mathworks webpage on pricing and licensing.

2.2 Matlab installation on Windows

Make sure you own a valid Matlab licence and have a Mathworks account activated before you initiate the
installation of Matlab. Once this is done, the first step consists in downloading the Matlab installer from

11

https://www.mathworks.com/pricing-licensing.html


12 CHAPTER 2. INSTALLING ALEXANDRIA, MATLAB EDITION

the Mathworks download webpage. Enter your account credentials and complete the steps to obtain the
installation programme.

To initiate the installation, double-click on the setup.exe icon within the installation programme. This will
open the installation navigator (Figure 2.1). Follow the steps to install Matlab, register your license and
create a desktop shortcut. Once this is done, Matlab’s installation should be complete. To start Matlab,
simply double-click on the desktop shortcut.

Figure 2.1: The Matlab installation navigator

If you experience issues or wish furher details about the installation process, you may consult the
Mathworks help page on installation, or the Mathworks video on Windows installation.

2.3 Matlab installation on Linux/macOS

Installing Matlab on Unix operating systems can be tricky, and unfortunately Mathworks does not provide
much official installation support. For Linux, Matlab is only available for recent editions of Ubuntu,
Debian, Redhat and Suse. On macOS, Matlab can be installed on macOS Catalina, macOS Mojave and
macOS High Sierra. Before you start the installation, make sure you own a valid Matlab licence and have
a Mathworks account activated. Then the first step consists in downloading the Matlab installer from
the Mathworks download webpage. Enter your account credentials and complete the steps to obtain the
installation programme.

If you are on Linux, once the download is over, open a terminal (refer to section 1.4 if you are unfamiliar
with the terminal) and navigate to the folder containing the download. So for instance if the path to the
folder containing the installation file is "∼/Downloads", execute the command:

cd ∼/Downloads

Then initiate the installation by executing the command:

sudo ./install

You may be prompted to enter your username and password. This will open the installation navigator
(Figure 2.1). Follow the steps to install Matlab and register your license. Once this is done, Matlab’s
installation should be complete. To start Matlab, you may then execute the following command in a
terminal:

https://www.mathworks.com/downloads/web_downloads
https://www.mathworks.com/help/install/install-products.html
https://youtu.be/f1UoHTf_Kgk
https://www.mathworks.com/downloads/web_downloads
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matlab

If this fails, it means that Matlab did not generate the required symbolic links during the installation.
In this case, Matlab must be started by specifying the full path to the bin folder within the installation
directory. For instance, if Matlab is installed in /usr/local/MATLAB/R2020b, then it should be started
with the command:

/usr/local/MATLAB/R2020b/bin/matlab

If you experience issues during the installation process, you may find some additional information on the
Mathworks help page on installation, on this Mathworks forum and on this Linux community webpage. If
you experience issues to start Matlab, you may consult the Mathworks help page on Matlab start for Linux.

If you are on macOS, once the download is over, the installation file should come as a zip archive. Once
extracted, you should obtain a file called InstallForMacOSX. Double-click it to initiate the installation.
This will open the installation navigator (Figure 2.1). Follow the steps to install Matlab and register your
license. Once this is done, Matlab’s installation should be complete. To start Matlab, you may either
double-click the Matlab icon in your Matlab installation folder, or start it from the terminal by specifying
the full path to the bin folder within the installation directory. For instance, if Matlab is installed in
/Applications/MATLAB/R2020b, then it should be started with the terminal command:

/Applications/MATLAB/R2020b/bin/matlab

If you experience issues during the installation process, you may find some additional information on
the Mathworks help page on installation, or on this support web page. If you experience issues to start
Matlab, you may consult the Mathworks help page on Matlab start for macOS.

2.4 Alexandria: local installation

There are two options to install Alexandria: a local install that consists in creating a local copy of the folder
containing the programmes for each of your projects, or a permanent install that installs the programme on
your system once for all. For beginners, it may be easier to use the local installation as it is straightforward
and more intuitive (one copy of the application is created for each project).

To proceed to a local install, you first need to recover the folder containing the Alexandria programmes.
There are two possibilities to do so. You can go to the Alexandria website, navigate to Downloads on the
left menu, and in the Toolbox section click on the link for the Matlab edition of the software (Figure 2.2).
This will donwload a zip file containing the toolbox programme folder.

Alternatively, you can visit the Github page of the project, click on the alexandria-matlab repo (it is a
public repository), then click on (Figure 2.3):

Code -> Download ZIP

In both cases, unzip the ZIP archive to obtain a folder named "alexandria-matlab". This is your local
install folder that contains all the programmes to run Alexandria. This folder also constitutes the basis of
your project folder (see section 3.2), so you can rename it the way you want to match your project name
and move it to any directory you wish. For instance, you may rename the folder "my_project" and place
it in D:\my_project (Figure 2.4).

https://www.mathworks.com/help/install/install-products.html
https://www.mathworks.com/matlabcentral/answers/518584-how-do-i-install-on-ubuntu
https://linuxconfig.org/how-to-install-matlab-on-ubuntu-20-04-focal-fossa-linux
https://www.mathworks.com/help/matlab/matlab_env/start-matlab-on-linux-platforms.html
https://www.mathworks.com/help/install/install-products.html
https://www.geeksforgeeks.org/installing-matlab-on-macos/
https://www.mathworks.com/help/matlab/matlab_env/start-matlab-on-macintosh-platforms.html
https://alexandria-toolbox.github.io
https://github.com/alexandria-toolbox
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Figure 2.2: The Downloads page of the Alexandria website

Figure 2.3: The Github repo for the Matlab version of the toolbox
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Figure 2.4: The local install folder after renaming

2.5 Alexandria: permanent installation

Installing Alexandria permanently on Matlab is easy. Start Matlab, then in the top menu bar select
"Add-Ons", then "Get Add-Ons" (Figure 2.5).

Figure 2.5: Selecting Matlab Add-Ons

This opens the Add-On Explorer. In the top search bar, search for "Alexandria". Select the first choice:
Alexandria, by Romain Legrand. Finally, click on the "Add" button on the right to complete the instal-
lation (Figure 2.6). This requires a valid Mathworks account. Once the procedure is over, Alexandria is
installed permanently on Matlab. At anytime you may uninstall Alexandria by selecting "Add-Ons" in
the top menu bar, then "Manage Add-Ons", then select the rollmenu (triple dots) of Alexandria and select
"uninstall".
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Figure 2.6: Installing the Alexandria toolbox

With Alexandria installed on your system, you can move to the creation of your project folder (section
3.2).



CHAPTER 3

Preparing the project

3.1 Creating the project folder: Python edition

If you opted for a local installation of Alexandria, your project folder is already initiated. It should look
like Figure 3.1:

Figure 3.1: Initial project folder with local installation

Make sure you read and agree with the End-User License Agreement. You can then delete the file if you
wish (note that are still bound by the Agreement if you do so). Do not delete or modify the alexandria
folder and its contents as it contains the software programmes.

What to do with the four remaining files depends on how you plan to use Alexandria. Alexandria can
be run either from a graphical user interface (Figure 3.2, panel (a)), or from an integrated development
environment (Figure 3.2, panel (b)).

(a) Alexandria GUI (b) Alexandria IDE

Figure 3.2: Graphical User Interface and Integrated Development Environment

17
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The graphical user interface (GUI) is a simple graphical window in which the user inputs the model pa-
rameters. It is recommended for users with limited programming experience. The integrated development
environment (IDE) is a python script in which the user enters manually the model information directly as
code. It is recommended for users with some programming experience. Additional information on the
GUI and IDE can be found in chapters 4 and 5.

If you plan to use the GUI, then keep either the file alexandria_gui.ipynb for a use in Jupyter Notebook,
or the file alexandria_gui.py for a use in Spyder. If you plan instead to use the IDE, then keep either the
file alexandria_ide.ipynb for a use in Jupyter Notebook, or the file alexandria_ide.py for a use in Spyder.
Whatever your choice, the other three files can be deleted. So for instance if you plan to use Alexandria
with the GUI in Jupyter notebook (the recommended choice for novice users), your project folder will
look like Figure 3.3:

Figure 3.3: Updated project folder with local installation

If you opted for a permanent installation of Alexandria, you don’t have a project folder yet. So, create a
new folder that will contain your project, place it in any convenient directory and call it as you wish. It is
not necessary to copy all the programmes for the software as for a local install since they are permanently
installed on your system. It is however recommended for convenience that you include a copy of one of
the four files alexandria_gui.ipynb, alexandria_gui.py, alexandria_ide.py or alexandria_ide.ipynb in your
project folder, depending on how you plan to use Alexandria. Please refer to section 1.5 to see how you
can download these files.

So assume for instance that you create a project folder called my_project and place it in D:\my_project.
You then create in it a copy of the file alexandria_gui.ipynb to use Alexandria with the GUI. Your initial
project folder should then look like Figure 3.4:

Figure 3.4: Project folder with permanent installation
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3.2 Creating the project folder: Matlab edition

If you opted for a local installation of Alexandria, your project folder is already initiated. It should look
like Figure 3.5:

Figure 3.5: Initial project folder with local installation

Make sure you read and agree with the End-User License Agreement. You can then delete the file if you
wish (note that are still bound by the Agreement if you do so). Do not delete or modify the alexandria
folder and its contents as it contains the software programmes.

What to do with the two remaining files depends on how you plan to use Alexandria. Alexandria can
be run either from a graphical user interface (Figure 3.2, panel (a)), or from an integrated development
environment (Figure 3.2, panel (b)).

(a) Alexandria GUI (b) Alexandria IDE

Figure 3.6: Graphical User Interface and Integrated Development Environment

The graphical user interface (GUI) is a simple graphical window in which the user inputs the model pa-
rameters. It is recommended for users with limited programming experience. The integrated development
environment (IDE) is a python script in which the user enters manually the model information directly as
code. It is recommended for users with some programming experience. Additional information on the
GUI and IDE can be found in chapters 4 and 5.

If you plan to use the GUI, then keep the file alexandria_gui.m. If you plan instead to use the IDE, keep
the file alexandria_ide.m. Whatever your choice, the other file can be deleted. So for instance if you plan
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to use Alexandria with the GUI (the recommended choice for novice users), your project folder will look
like Figure 3.7:

Figure 3.7: Updated project folder with local installation

If you opted for a permanent installation of Alexandria, you don’t have a project folder yet. So, create a
new folder that will contain your project, place it in any convenient directory and call it as you wish. It is
not necessary to copy all the programmes for the software as for a local install since they are permanently
installed on your system. You may however include a copy of either alexandria_gui.m or alexandria_ide.m
for convenience, though there are ways to work without these files completely. Please refer to section
2.4 to see how you can download these files, and to sections 4.2 and 5.2 for precisions on how to use
Alexandria without having to copy these files.

So assume for instance that you create a project folder called my_project and place it in D:\my_project.
You then create in it a copy of the file alexandria_gui.m to use Alexandria with the GUI. Your initial
project folder should then look like Figure 3.8:

Figure 3.8: Project folder with permanent installation

3.3 Creating the base data file for the model

Once your project folder is initiated, the next step consists in creating the data file that constitutes the base
input of your project. This base dataset must be placed directly in your project folder, or, if you want
to avoid to have many inputs files in the project folder, in some created subfolder that you may e.g. call
inputs. If you place the data file in an input subfolder, your project folder may look like Figure 3.9:
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Figure 3.9: Project folder with data file

The data file must contain all the variables that are involved in the estimation of your model: endogenous,
exogenous, and possibly others like heteroscedastic variables, if applicable. Do not include constants or
trends in the data file, as Alexandra handles these automatically (see section 4.4).

Alexandria accepts three types of files: Excel spreadsheets with either the .xls or .xlsx file extension, and
also .csv files which can be easily obtained from any open source spreadsheet such as LibreOffice Calc.
A typical dataset will look like Figure 3.10:

Figure 3.10: Project spreadsheet in Excel format

The spreadsheet is organised in a simple way: the first column contains the dates labels, while the first row
is used for the names of the variables. The rest of the speadsheet contains the numerical values. Consider
now these elements in details.
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• Variable names

The first row of the spreasdheet contains the labels of the variables. It must start in cell B1 and expand
on the right, as in Figure 3.9. Names can contain letters, digits and underscores, but no spaces or special
characters. They cannot start with a digit. Also, it is recommended to keep names short (less than 15
characters) to avoid minor display issues with the toolbox.

• Date labels

The first column of the spreadsheet contains the date labels. It must start in cell A2 and develop downward,
as in Figure 3.9. Alexandria accepts six different date formats: annual, quarterly, monthly, weekly, daily,
and if none of these applies, a cross-section/undated format. Except for the undated format, the dates can
be expressed either in international date format (as in Figure 3.9), or in periodic format. Precisely, the
different formats must be specified as follows:

annual data: dates can be specified either in international date format of the form yyyy-mm-dd, of in
periodic format of the form yyyy. For instance:
international date format: 2000-12-31, 2001-12-31, 2002-12-31...
periodic format: 2000, 2001, 2002...
It does not matter which day is chosen within the year for the international date format, as long as there is
only one observation per year.

quarterly data: dates can be specified either in international date format of the form yyyy-mm-dd, of in
periodic format of the form yyyy + Q + quarter. For instance:
international date format: 2000-03-31, 2000-06-31, 2000-09-31...
periodic format: 2000Q1, 2000Q2, 2000Q3...
The format is case-sensitive so that 2000Q1 is valid, while 2000q1 isn’t. It does not matter which day is
chosen within the quarter for the international date format, as long as there is only one observation per
quarter.

monthly data: dates can be specified either in international date format of the form yyyy-mm-dd, of in
periodic format of the form yyyy + M + month. For instance:
international date format: 2000-01-31, 2000-02-28, 2000-03-31...
periodic format: 2000M1, 2000M2, 2000M3...
The format is case-sensitive so that 2000M1 is valid, while 2000m1 isn’t. It does not matter which day
is chosen within the month for the international date format, as long as there is only one observation per
month.

weekly data: dates can be specified either in international date format of the form yyyy-mm-dd, of in
periodic format of the form yyyy + W + week. For instance:
international date format: 2000-01-07, 2000-01-14, 2000-01-21...
periodic format: 2000W1, 2000W2, 2000W3...
The format is case-sensitive so that 2000W1 is valid, while 2000w1 isn’t. It does not matter which day
is chosen within the week for the international date format, as long as there is only one observation per
week. Also, any number of weeks is acceptable for each year as long as it is at most 53.

daily data: dates can be specified either in international date format of the form yyyy-mm-dd, of in peri-
odic format of the form yyyy + D + day. For instance:
international date format: 2000-01-03, 2000-01-04, 2000-01-05...
periodic format: 2000D3, 2000D4, 2000D5...
The format is case-sensitive so that 2000D1 is valid, while 2000d1 isn’t. Alexandria uses calendar days,
not business days. hence December 31, 2000 is 2000D366, not 2000D261. Your dataset doesn’t need to
include all the days in the year, and any day can be missing. This will typically happen for instance if you
consider business days only so that weekends are ignored.
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cross-sectional/undated data: observations must be labelled as integer values. For instance:
1, 2, 3, 4 ...
The list does not have to start at 1, though that is probably the option that makes most sense.

For consistency reasons Alexandria always works with end-of-period dates. If the dataset does not follow
this convention, Alexandria will automatically offset the dates to match this format. So for instance if you
use quarterly data and uses the date 1960-01-01 for the first quarter of 1960 (as in Figure 3.10), Alexandria
will shift it to 1960-03-31. This mostly impacts the spreadsheet/graphical outputs of the toolbox and has
no consequence on estimation.

• Data

The remainder of the spreadsheet contains the data itself. The dataset is a rectangular array corresponding
to the dates for the rows and to the variables for the columns, as shown in Figure 3.10. The data has to be
numerical and may not include missing values.

3.4 Other datafiles: forecasts

If you run forecasts as an application for your model, you need to provide additional data in a separate
file. To do so, create a new spreadsheet and give it the name you want (e.g. data_forecast). Similarly
to the base data file, the prediction data file can be of type .xlsx, .xls, or .csv. Also, you may place the
file either in the project folder directly, or in subfolder if convenient. Assuming you place the file in a
subfolder called inputs, your project folder looks like Figure 3.11:

Figure 3.11: Project spreadsheet in Excel format
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A typical forecast data file will look like Figure 3.12:

Figure 3.12: Project spreadsheet in Excel format

The file is overall similar to the base datafile introduced in section 3.3, with a few differences. First, no
dates need to be specified on the left columns. This is because when producing forecasts, Alexandria will
automatically generate prediction dates as the follow-up of in-sample dates. It is therefore irrelevant how
dates are specified in the prediction files as they will be ignored. For simplicity, it is recommended to use
simple integer values, as in Figure 3.12.

Second, not all the model variables need to be provided in the forecast file. Exogenous variables need
to be provided since they are by definition exogenously supplied. The only exceptions are constants and
trends for which no values are needed since they are handled automatically. For any other exogenous
variable, not providing value will result in an error. Endogenous variables may or may not be provided,
depending on whether forecast evaluation criteria are selected (see section 4.6 for more details on forecast
evaluation criteria). Providing values for endogenous variables will produce counterfactuals that will
be used for the computation of forecast evaluation criteria. Selecting forecast evaluation criteria but not
providing endogenous variable values will result in an error. If forecast evaluation criteria are not selected,
endogenous variable need not be provided and can be omitted in the forecast data file.



CHAPTER 4

Running Alexandria from the Graphical
user Interface

4.1 Launching the interface: Python edition

If you have opted for a local installation of Alexandria, your project folder must contain either the file
alexandria_gui.ipynb (for a use in Jupyter Notebook) or the file alexandria_gui.py (for a use in Spyder). If
you want to use Alexandria in Jupyter, start Jupyter Notebook, and in the explorer navigate to the project
folder, then click on the file alexandria_gui.ipynb. This will open the notebook in a web browser. To start
the Graphical Interface, move to the top menu bar (Figure 4.1) and click on:

Kernel -> Restart & Run All

This will start the Graphical User Interface.

Figure 4.1: Starting the Graphical Interface from Jupyter Notebook

If instead you prefer to start Alexandria from a simple python script, open Spyder, then on the top menu
bar click:

File -> Open

This will open a navigator. Navigate to your project folder and click the file alexandria_gui.py. This opens
the python script in your Spyder window. To start the Graphical Interface, go again for the top menu bar
of Spyder (Figure 4.2) and click:

25
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Run -> Run

This will start the Graphical User Interface.

Figure 4.2: Starting the Graphical Interface from Spyder

If you opted for a permanent installation, it is recommended that you proceed the same way. However, in
this case there exists an alternative way to start the Graphical Interface without using any of the files. You
may just execute the following command in Jupyter or Spyder:

from alexandria import alexandria_gui

Importing the module will also execute it, and so the command is equivalent to running the script alexan-
dria_gui.py. Note that this way is considered somewhat hacky and is not recommended.

4.2 Launching the interface: Matlab edition

If you have opted for a local installation of Alexandria, your project folder should normally contain the
file alexandria_gui.m. If that is the case, start Matlab, then on the current folder explorer (usually located
on the left side of the Matlab window) navigate to your project file and double-click on alexandria_gui.m.
This should open the file in a new window. To start the Graphical Interface, move to the top menu bar
(Figure 4.3) and click on:

Run -> Run: alexandria_gui

This will start the Graphical User Interface. You may also simply click on the green triangle arrow above
the Run button to run the script directly.

If you opted for a permanent installation, you can proceed the same way. However, it is also possible to
start the interface trivially and without any script in this case. Simply execute the following command in
the Matlab console:

alexandria_gui

This will launch the Graphical User Interface.
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Figure 4.3: Starting the Graphical Interface from Matlab

4.3 Interface: tab 1

The first tab of the Graphical User Interface is depicted in Figure 4.4. The figure shows the interface for
the Python edition of Alexandria, but the Matlab version is absolutely similar. Tab 1 is used for general
model specification, data source and estimation options.

Figure 4.4: Tab 1 of the Graphical User Interface
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Tab 1 specifies the following elements:

� Model, model selection: the general model you want to estimate. So far Alexandria only proposes the
linear regression, but other models will be availble as the toolbox develops.

� Model, endogenous variables: the list of endogenous variables for the model, separated by a space.
for instance: endo1 endo2 endo3

� Model, exogenous variables: the list of exogenous variables for the model, separated by a space.
for instance: exo1 exo2 exo3

� Model, data frequency: the dataset frequency. It must correspond to the frequency of the data in
the base data file (see section 3.3). The six frequencies available are: annual, quarterly, monthly, weekly,
daily, and cross-sectional/undated.

� Model, estimation sample: the start and end dates of the estimation sample, separated by a space. The
date format must be consistent with that of the the base data file (see section 3.3).
for instance, for quarterly data in international date format: 1960-01-01 2018-10-01
for instance, for quarterly data in periodic format: 1960Q1 2018Q4

� Settings, path to project folder: the path to your project folder. The path must be consistent with your
OS, and thus use the correct separator (slash or backslash).
for instance, on Windows: D:\my_project
for instance, on Linux: /home/user/my_project

� Settings, data file: name of the base datafile in your project folder, with the relevant extension (xls,
xlsx or csv).
for instance: data.xls
tip: for a better organisation of the project folder, it is possible to create a subfolder that will contain the
base data file, possibly along with other input files. In this case, simply specify the data file as a path with
the subfolder containing the file.
for instance, with a subfolder called "inputs": inputs\data.xls

� Settings, progress bar: if yes, a progress bar is displayed as the model is being estimated. The progress
bar is a useful indicator, but it increases the computational cost of the programme.

� Settings, graphics and figures: if yes, estimation plots are produced after estimation is complete.
The graphics are saved in a subfolder called "graphics", and displayed in tab 4 of the interface. Please
refer to section 6.3 for additional details. The plots constitute very useful outputs, but can take time to be
produced for large models.

� Settings, save results in project folder: if yes, a number of estimation outputs are saved in text and csv
format in a subfolder called "results". The files contain information about the model settings, coefficients
and applications. Please refer to section 6.2 for additional details.

� Settings, Reset all: by default, Alexandria saves your interface inputs and propose them again in
subsequent runs. Pressing the Reset all buttons deletes all previous inputs and resets the interface to
default values.

� Run button: press this button to start the estimation. This should not be pressed if tabs 2 and 3 have
not been completed. It can however constitute a useful shortcut if for instance you run the same model
again and don’t modify your previous settings.
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4.4 Interface: tab 2, linear regression

Figure 4.5 depicts tab 2 of the Graphical User Interface when the selected model is the linear regression.

Figure 4.5: Tab 2 of the Graphical User Interface, linear regression

Tab 2 deals with model-specific information and prior. It contains the following elements:

� Regression type: the specific linear regression model you want to estimate. Alexandria proposes
six different linear regression models: maximum likelihood, simple Bayesian, hierarchical, independent,
heteroscedastic and autocorrelated. Please consult the textbook, sections 9.1 to 9.6, for additional details
on the different models.

� Estimation, iterations: the number of iterations for the MCMC algorithms, after the burn-in iterations
are completed. Applies only to models using MCMC methods.
for instance: 5000

� Estimation, burn-in: the number of burn-in iterations for the MCMC algorithms. Applies only to
models using MCMC methods.
for instance: 2000

� Estimation, credibility level: the credibility level used for the calculation of credibility intervals for
the model estimates. Must be comprised between 0 and 1.
for instance: 0.95

� Hyperparameters, b: the prior mean on the regression coefficients β . Can be a single value, in which
case the same prior mean applies to all coefficients. Else, must be a list of values separated by a space,
one value for each exogenous variable. No values should be provided for potential constants and trends
which are handled separately (see below).
for instance: 0, or: 0.2 0.4

� Hyperparameters, V: the prior variance on the regression coefficients β . Can be a single value, in
which case the same prior variance applies to all coefficients. Else, must be a list of values separated by
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a space, one value for each exogenous variable. No values should be provided for potential constants and
trends which are handled separately (see below).
for instance: 1, or: 0.5 1

� Hyperparameters, ααα: the prior shape on the residual variance σ . Must be a positive scalar.
for instance: 0.0001

� Hyperparameters, δδδ : the prior scale on the residual variance σ . Must be a positive scalar.
for instance: 0.0001

� Hyperparameters, g: the prior mean on the heteroscedastic coefficients γ . Can be a single value, in
which case the same prior mean applies to all coefficients. Else, must be a list of values separated by a
space, one value for each heteroscedastic variable.
for instance: 0, or 0 0

� Hyperparameters, Q: the prior variance on the heteroscedastic coefficients γ . Can be a single value,
in which case the same prior variance applies to all coefficients. Else, must be a list of values separated
by a space, one value for each heteroscedastic variable.
for instance: 100, or 100 100

� Hyperparameters, τττ: the variance of the random walk kernel for the Metropolis-Hastings algorithm.
Should be set (by trial and error) to generate an acceptance rate of 20%-30%.
for instance: 0.001

� Hyperparameters, thinning: if selected, thinning is applied to the Metropolis-Hastings algorithm,
which helps to reduce the number of repeated values and produces a finer distribution. This is useful but
generates additional calculations (see next parameter).

� Hyperparameters, frequency: thinning frequency: if set to n, only 1 out of n iterations will be
retained, the other iterations being discarded. This mutliplies by n the total number of iterations in order
to maintain constant the final number of draws. It can then prove very costly for large n.
for instance: 10

� Hyperparameters, Z variables: the list of heteroscedastic variables. These regressors must be found
in the same base data file as the base model regressors. Can be the same variables as the model exogenous
variables, but other variables can be used if relevant.
for instance: htr1 htr2 htr3

� Hyperparameters, q: the order of autocorrelation for the autocorrelated regression. Must be some
integer equal of larger than 1.
for instance: 2

� Hyperparameters, p: the prior mean on the autocorrelated coefficients φ . Can be a single value, in
which case the same prior mean applies to all coefficients. Else, must be a list of values separated by a
space, one value for each lag of autocorrelation.
for instance: 0 or 0.9 0

� Hyperparameters, H: the prior variance on the autocorrelated coefficients γ . Can be a single value, in
which case the same prior variance applies to all coefficients. Else, must be a list of values separated by a
space, one value for each lag of autocorrelation.
for instance: 100 or 100 100

� Exogenous, constant: if selected, adds a constant to the linear regression.

� Exogenous, constant, b: the prior mean on the constant. Must be a scalar.
for instance: 0
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� Exogenous, constant, V: the prior variance on the constant. Must be a positive scalar.
for instance: 100

� Exogenous, linear trend: if selected, adds a linear trend to the linear regression.

� Exogenous, linear trend, b: the prior mean on the linear trend. Must be a scalar.
for instance: 0

� Exogenous, linear trend, V: the prior variance on the linear trend. Must be a positive scalar.
for instance: 100

� Exogenous, quadratic trend: if selected, adds a quadratic trend to the linear regression.

� Exogenous, quadratic trend, b: the prior mean on the quadratic trend. Must be a scalar.
for instance: 0

� Exogenous, quadratic trend, V: the prior variance on the quadratic trend. Must be a positive scalar.
for instance: 100

� Options, in-sample fit: if selected, calculates the in-sample fit of the model, saves the fit estimates in
the results folder, and produces fit plots.

� Options, marginal likelihood: if selected, calculates the marginal likelihood for the model and displays
the value in the console output of the model estimation.

� Options, hyperparameter optimization: if selected, runs a numerical optimization procedure to find
the hyperparameter values V and δ that maximize the mariginal likelihood, and use these values for the
priors. Applicable only to the simple Bayesian and hierarchical regressions.

� Options, optimization type: if simple, a common prior variance is assumed for all the β coefficients,
and the optimizer will search for a single optimal scalar value for V. If full, a different prior variance is
assumed for the β coefficients, so that the optimizer will try to find a different optimal value for each V
coefficient.



32 CHAPTER 4. RUNNING ALEXANDRIA FROM THE GRAPHICAL USER INTERFACE

4.5 Interface: tab 3

Tab 3 deals with the applications associated to the estimated model. It is depicted in Figure 4.6. So far
Alexandria only proposes the linear regression model, so most applications are unavailable since they are
associated to VAR models. However, certain applications remain available for the linear regression.

Figure 4.6: Tab 3 of the Graphical User Interface

So far, the following applications are available for the linear regression:

� Application and credibility levels, forecasts: if yes, forecasts are estimated for the model. This
requires a valid forecast input file to supply exogenous predictors. See section 3.4 for additional details.

� Application and credibility levels, forecasts, credibility level: credibility level for the computation
of credibility bands around the forecasts. Must be a scalar between 0 and 1.
for instance: 0.95

� Application settings, forecast evaluation: if selected, calculates forecast evaluation criteria for the
model predictions and displays them in the estimation output. Requires valid counterfactual values in the
forecast data file (see section 3.4 for additional details).

� Application settings, forecast input file: name of the forecast datafile in your project folder, with the
relevant extension (xls, xlsx or csv).
for instance: data_forecast.xls
tip: similar to the base data file, it is possible to place the forecast datafile in a subfolder inside your
project folder, and specify the name as a path to the subfolder.
for instance, with a subfolder called "inputs": inputs\data_forecast.xls

� Run button: press this button to start the estimation. This should be pressed only when tabs 1, 2 and 3
have all been completed.



4.6. INTERFACE: TAB 4 33

4.6 Interface: tab 4

Tab 4 deals with the graphical outputs of the toolbox. It is depicted in Figure 4.7. Prior to model esti-
mation, no graphics are available and thus the interface only displays the image "No graphic to display
yet". This tab becomes useful only once model estimation is completed. Please refer to section 6.2 for
additional details on how to navigate this tab once graphics are produced.

Figure 4.7: Tab 4 of the Graphical User Interface
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4.7 Interface: tab 5

Tab 5 of the Graphical User Interface is depicted in Figure 4.8. It does not offer any interaction but offers
general information about the toolbox and related social media.

Figure 4.8: Tab 5 of the Graphical User Interface
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Alternative ways to run Alexandria

5.1 Running Alexandria from the Integrated Development Environment:
Python edition

If you don’t want to navigate the Graphical User Interface every time you re-estimate a model, you can
use a more straightfoward way to run the toolbox: the Integrated Development Environment (IDE). Fun-
damentally, the IDE is a simple Python script that is equivalent to the Graphical user Interface but replaces
the interface navigation with direct Python code. Running Alexandria from the IDE then only requires
to run the script from Jupyter or Spyder, which can prove much faster than using the Graphical User
Interface.

For the Python edition of Alexandria, using the IDE requires that you place in your project folder either
the file alexandria_ide.ipynb (for a use in Jupyter Notebook) or the file alexandria_ide.py (for a use in
Spyder). It is recommended that you install Alexandria permanently if you want to use the IDE so that
you can simply copy and paste the file alexandria_ide.ipynb / alexandria_ide.py in any new project folder
you create. Otherwise, you need to proceed to a full local installation, as described in section 1.5.

Figure 5.1: Alexandria IDE on Jupyter Notebook
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Figure 5.2: Alexandria IDE on Spyder

The file alexandria_ide.ipynb is shown in Figure 5.1, while alexandria_ide.py is depicted in Figure 5.2. As
you can see they appear as simple Python scripts, with some parts editable. All you need to do is to edit
the editable parts of the script to provide the relevant information about your project. The correspondance
with the elements of the Graphical user Interface should be straightforward, but if needed you may refer
to chapter 4 for additional details.

In terms of format, the comments provided before each editable lines will guide you to edit the part
correctly. Note that even though the format is indicated for each item, using the IDE requires minimal
familiarity with Python programming and its syntax. Note also that the code cannot check for improper
inputs, so that any misspecified entry will result in an exception during the programme.

Once the file is properly edited, starting the toolbox only requires to execute the script: if needed, refer to
section 4.1.

5.2 Running Alexandria from the Integrated Development Environment:
Matlab edition

If you don’t want to navigate the Graphical User Interface every time you re-estimate a model, you can
use a more straightfoward way to run the toolbox: the Integrated Development Environment (IDE). Fun-
damentally, the IDE is a simple Matlab script that is equivalent to the Graphical user Interface but replaces
the interface navigation with direct Matlab code. Running Alexandria from the IDE then only requires
to run the script from your Matlab console, which can prove musch faster than using the Graphical User
Interface.
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For the Matlab edition of Alexandria, there are two different ways to use the IDE. If you installed Alexan-
dria locally, using the IDE requires that you place in your project folder the file alexandria_ide.m. If you
installed Alexandria permanently you can proceed the same way, but you can also use the file alexan-
dria_ide.m that is permanently installed on your Matlab. To edit the file, simply execute the following
command in the Matlab console:

open alexandria_ide

You can then work with the opened file as if it was a local alexandria_ide.m file placed in your project
folder.

Figure 5.3: Alexandria IDE on Jupyter Notebook

The file alexandria_ide.m is shown in Figure 5.3. As you can see, it appears as a simple Matlab script, with
some parts editable. All you need to do is to edit the editable parts of the script to provide the relevant
information about your project. The correspondance with the elements of the Graphical user Interface
should be straightforward, but if needed you may refer to chapter 4 for additional details.

In terms of format, the comments provided before each editable lines will guide you to edit the part
correctly. Note that even though the format is indicated for each item, using the IDE requires minimal
familiarity with Matlab programming and its syntax. Note also that the code cannot check for improper
inputs, so that any misspecified entry will result in an error during the programme.

Once the file is properly edited, starting the toolbox only requires to execute the script: if needed, refer to
section 4.2.



38 CHAPTER 5. ALTERNATIVE WAYS TO RUN ALEXANDRIA

5.3 Running Alexandria on the fly: Python edition

The Graphical User Interface and Integrated Developement Environments provide convenient ways to run
your models, but they may lack flexibility. For instance, experienced computer or data scientists may want
to integrate the model estimation within some larger programme or application. In this case, the GUI and
IDE are not suitable. Fortunately, Alexandria also offers the possibility to call the models on the fly, as
you would do for instance with libraries such as Scikit-learn or statsmodels. In this case, you can directly
create model objects, call their methods and recover their attributes, as you would with any object.

The following piece of code provides a simple example of the use of Alexandria on the fly (here to replicate
the simple Bayesian regression developed in section 9.8 of the textbook):

# imports: SimpleBayesianRegression class, load_taylor function, Numpy library
from alexandria.linear_regression import SimpleBayesianRegression
from alexandria.datasets import data_sets as ds
import numpy as np

# create regression data from Taylor dataset
taylor_data = ds.load_taylor()
y = taylor_data[:,0]
X = taylor_data[:,1:]

# set prior mean and prior variance for the model
b = np.array([1.5, 0.5])
b_const = 1
V = np.array([0.01, 0.0025])
V_const = 0.01

# create regression object
sbr = SimpleBayesianRegression(endogenous=y, exogenous=X, constant=True,
b_exogenous=b, V_exogenous=V, b_constant=b_const, V_constant=V_const)

# use method 'estimate' to train the model
sbr.estimate()

# print posterior estimates recovered from model attribute 'estimates_beta'
estimates = sbr.estimates_beta
print('posterior median (constant): ' + str(round(estimates[0,1],2)))
print('posterior median (inflation): ' + str(round(estimates[1,1],2)))
print('posterior median (output gap): ' + str(round(estimates[2,1],2)))

Let’s take a closer look at the code. Lines 2-4 deal with imports. Line 2 and 3 import Alexandria modules
for the model: the SimpleBayesianRegression class, and the load_taylor function to load the Taylor rule
toy dataset (see section 8.1 for additional details). Line 4 additionally imports the Numpy data science
library which is used later in the code.

Lines 7-9 load the Taylor dataset and split it into the exogenous variable y and the exogenous regressors
X .

Lines 12-15 generate the elements for the prior mean and variance of the linear regression, consistent with
the values introduced in section 9.8 of the textbook. Note that the constant is treated separately from the
other exogenous regressors.
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Lines 18-19 create the linear regression object "sbr" from the SimpleBayesianRegression class. The con-
structor takes as argument the endogenous and exogenous regressors (endogenous=y, exogenous=X), adds
a constant to the regression (constant=True), and defines the prior mean and variance for the exogenous
variables and the constant (b_exogenous=b, V_exogenous=V, b_constant=b_const, V_constant=V_const).
Note that the class could accept many other optional arguments that are here ignored and thus set to their
default values.

Line 22 uses the estimate method to train the model and compute its posterior distribution.

Finally, lines 25-28 recover the posterior estimates from the model attribute estimates_beta, then print
them on the Python console. The outcome of these final statements is:

posterior median (constant): 1.03
posterior median (inflation): 1.11
posterior median (output gap): 0.34

It can be verified that these values correspond to that shown in Table 9.1 of the textbook.

This simple example illustrates the flexibility of Alexandria on the fly. The question that remains is: where
to find the information on the different classes, methods and attributes? Chapter 7 of this guide provides
full documentation for all the model classes proposed in Alexandria, along with a description of their
methods and attributes.

If you don’t want to read the guide, a quick fix consists in using the help function for the class. For
instance, you can execute the command:

help(SimpleBayesianRegression)

This will display the help of the class in the console (Figure 5.4), detailing the class constructor, methods
and attributes.

Two remarks to conclude. First, it is strongly recommended that you proceed to a permanent installation
if you inted to use Alexandria on the fly. This will save the hastle of creating local copies of the toolbox
everytime you want to estimate a model. Second, a use on the fly provides additional flexibility but
requires good knowledge of Python programming, and in particular some familiarity with the object-
oriented paradigm. Novice users should prefer the GUI and IDE for an optimal experience.
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Figure 5.4: The help function for the SimpleBayesianRegression class

5.4 Running Alexandria on the fly: Matlab edition

The Graphical User Interface and Integrated Developement Environments provide convenient ways to run
your models, but they may lack flexibility. For instance, experienced computer or data scientists may want
to integrate the model estimation within some larger programme or application. In this case, the GUI and
IDE are not suitable. Fortunately, Alexandria also offers the possibility to call the models on the fly, as
you would do for instance with libraries such as Scikit-learn or statsmodels. In this case, you can directly
create model objects, call their methods and recover their attributes, as you would with any object.

The following piece of code provides a simple example of the use of Alexandria on the fly (here to replicate
the simple Bayesian regression developed in section 9.8 of the textbook):

% create regression data from Taylor dataset
taylor_data = ds.load_taylor();
y = taylor_data(:,1);
X = taylor_data(:,2:end);

% set prior mean and prior variance for the model
b = [1.5, 0.5]';
b_const = 1;
V = [0.01, 0.0025]';
V_const = 0.01;
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% create regression object
sbr = SimpleBayesianRegression(y, X, 'constant', true, 'b_exogenous', b, ...

'V_exogenous', V, 'b_constant', b_const, 'V_constant', V_const);

% use method 'estimate' to train the model
sbr.estimate();

% print posterior estimates recovered from model attribute 'estimates_beta'
estimates = sbr.estimates_beta;
disp(['posterior median (constant): ' num2str(round(estimates(1,2),2))]);
disp(['posterior median (inflation): ' num2str(round(estimates(2,2),2))]);
disp(['posterior median (output gap): ' num2str(round(estimates(3,2),2))]);

Let’s take a closer look at the code. Lines 2-4 load the Taylor dataset and split it into the exogenous
variable y and the exogenous regressors X .

Lines 7-10 generate the elements for the prior mean and variance of the linear regression, consistent with
the values introduced in section 9.8 of the textbook. Note that the constant is treated separately from the
other exogenous regressors.

Lines 13-14 create the linear regression object "sbr" from the SimpleBayesianRegression class. The
constructor takes as argument the endogenous and exogenous regressors (y, X), adds a constant to the
regression (’constant’, true), and defines the prior mean and variance for the exogenous variables and the
constant (’b_exogenous’, b, ’V_exogenous’, V, ’b_constant’, b_const, ’V_constant’, V_const). Note that
the class could accept many other optional arguments that are here ignored and thus set to their default
values.

Line 17 uses the estimate method to train the model and compute its posterior distribution.

Finally, lines 20-23 recover the posterior estimates from the model attribute estimates_beta, then print
them on the Matlab console. The outcome of these final statements is:

posterior median (constant): 1.03
posterior median (inflation): 1.11
posterior median (output gap): 0.34

It can be verified that these values correspond to that shown in Table 9.1 of the textbook.

This simple example illustrates the flexibility of Alexandria on the fly. The question that remains is: where
to find the information on the different classes, methods and attributes? Chapter 7 of this guide provides
full documentation for all the model classes proposed in Alexandria, along with a description of their
methods and attributes.

If you don’t want to read the guide, a quick fix consists in using the help function for the class. For
instance, you can execute the command:

help SimpleBayesianRegression

This will display the help of the class in the console (Figure 5.5), detailing the class constructor, methods
and attributes.
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Figure 5.5: The help function for the SimpleBayesianRegression class

Two remarks to conclude. First, it is strongly recommended that you proceed to a permanent installation
if you inted to use Alexandria on the fly. This will save the hastle of creating local copies of the toolbox
everytime you want to estimate a model. Second, a use on the fly provides additional flexibility but
requires good knowledge of Matlab programming, and in particular some familiarity with the object-
oriented paradigm. Novice users should prefer the GUI and IDE for an optimal experience.



CHAPTER 6

Alexandria outputs

Once your model is succesfully estimated, Alexandria will produce a number of estimation outputs. If
you selected the option ’save results in project folder" in the GUI/IDE, Alexandria will create a "results"
folder within your project folder and will store in it a number of output files. If you selected the option
"graphics and figures"in the GUI/IDE, Alexandria will create a "graphics" folder and save in it a copy of
all the plots resulting from model estimation.

6.1 Console outputs

The first estimation output produced by Alexandria is a console output that summarizes model estimation.
A typical output is displayed in Figure 6.1.

The output comprises several parts. The top part (green frame) shows the progress bars used to visualize
the progression of the different estimation algorithms in real time. It appears only if the progress bar
option is selected in the GUI.

The second part (red frame) displays the model estimates for each parameter, including a point estimate
and, if applicable, the standard deviations and credibility bands.

The third part exhibits a number of in-sample fit critera, including traditional frequentist criteria (sum
of squared residuals, R2 and adjusted R2), but also the Bayesian log10 marginal likelihood. This part is
displayed only if the in-sample fit/marginal likelihood options are selected in the GUI.

The final part (purple frame) displays a number of out-of-sample forecast evaluation criteria. Here also
traditional frequentist criteria (RMSE, MAE, MAPE, Theil’s U and bias) are proposed along with specific
Bayesian criteria (CRPS and log score). This part is only displayed if the forecast evaluation option is
selected in the GUI and proper counterfactual values have been supplied in the forecast data file.

If the option "save results in project folder" is selected in the GUI, a copy of this console output will
be saved in the file "results.txt" in your "results" folder. Also, a second file named "settings.txt" will be
generated, which recapitulates all the inputs and options of your model.

43
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Figure 6.1: Alexandria IDE on Jupyter Notebook

6.2 Graphics outputs

The second type of outputs produced by Alexandria is a set of plots summarizing your model estimates
and applications. For convenience, these plots are automatically displayed in tab 4 of the Graphical User
Interface, as a simple navigator. The navigator is displayed in Figure 6.2:

The "Application" panel (green frame) allows you to navigate across the different applications. So far
Alexandria proposes "actual and fitted", "residuals", and "forecasts". To switch from one application to
another you can either use the slider, or the rollmenu located below it.

The next three panels ("Display type" panel in orange frame, "Variable" panel in blue frame, and
"Responding to" panel in purple frame) are irrelevant so far. They are dedicated to multivariate
models and have no use yet since Alexandria only proposes the univariate linear regression for now. These
elements have been created for architecture reasons and will become available as Alexandria develops new
applications.
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Figure 6.2: Tab 4 of the GUI as a graphical navigator

6.3 File outputs

Alexandria produces a number of additional estimation output files in the "results" folder of the project, de-
pending on the selected applications. For instance, if you selected the "forecasts" application, Alexandria
will produce a file "forecasts.csv" that recapitulates the prediction estimates. The file is fairly straightfor-
ward: it provides a summary of the posterior estimates of the forecasts, indicating for each prediction its
lower bound, median and upper bound. An example of such file for the linear regression is displayed in
Figure 6.3:

Figure 6.3: Tab 4 of the GUI as a graphical navigator

So far the applications for which Alexandria can record the posterior estimates and save them in csv files
are: actual and fitted values, residuals, and forecasts.
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CHAPTER 7

Alexandria classes - documentation

This chapter proposes an exhaustive documentation for the classes corresponding to the different models
proposed in Alexandria. The documentation is provided for the Python version of Alexandria, but it is
immediately applicable in a similar way to the Matlab version.

Note also that the documentation can be accessed directly from the console, by using the help function.
For instance, to obtain the documentation on the MaximumLikelihoodRegression class, you may simply
execute the Python command:

help(MaximumLikelihoodRegression)

On Matlab, equivalently:

help MaximumLikelihoodRegression

This will print on the console the same information as that developed in the incoming sections.
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7.1 Linear regression: MaximumLikelihoodRegression

A simple maximum likelihood (OLS) regression, described in section 9.1.

Class:
alexandria.linear_regression.MaximumLikelihoodRegression(endogenous, exogenous, constant = True,
trend = False, quadratic_trend = False, credibility_level = 0.95, verbose = False)

Parameters:

parameter description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.1)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.1)
constant bool, default = True: if True, an intercept is included in the regression
trend bool, default = False: if True, a linear trend is included in the regression
quadratic_trend bool, default = False: if True, a quadratic trend is included in the regression
credibility_level float, default = 0.95: credibility level (between 0 and 1)
verbose bool, default = False: if True, displays a progress bar

Attributes:

attribute description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.1)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.1)
constant bool: if True, an intercept is included in the regression
trend bool: if True, a linear trend is included in the regression
quadratic_trend bool: if True, a quadratic trend is included in the regression
credibility_level float: credibility level (between 0 and 1)
verbose bool: if True, displays a progress bar
y ndarray of shape (n,): endogenous variable, defined in (3.9.3)
X ndarray of shape (n,k): exogenous variables, defined in (3.9.3)
n int: number of observations, defined in (3.9.1)
k int: dimension of beta, defined in (3.9.1)
beta ndarray of shape (k,): regression coefficients
sigma float: residual variance, defined in (3.9.1)
estimates_beta ndarray of shape (k,4): estimates for beta

column 1: interval lower bound; column 2: point estimate;
column 3: interval upper bound; column 4: standard deviation

sigma float: residual variance, defined in (3.9.1)
X_hat ndarray of shape (m,k): predictors for the model
m int: number of predicted observations, defined in (3.10.1)
estimates_forecasts ndarray of shape (m,3): estimates for predictions

column 1: interval lower bound; column 2: point estimate;
column 3: interval upper bound

estimates_fit ndarray of shape (n,): posterior estimates (median) for in sample-fit
estimates_residuals ndarray of shape (n,): posterior estimates (median) for residuals
insample_evaluation dict: in-sample fit evaluation (SSR, R2, adj-R2)
forecast_evaluation_criteria dict: out-of-sample forecast evaluation (RMSE, MAE, ...)
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Methods:
� estimate()
trains the model, produces estimates for parameters β and σ .
parameters:
- none
returns:
- none

� fit_and_residuals()
estimates in-sample fit and regression residuals.
parameters:
- none
returns:
- none

� forecast(X_hat, credibility_level)
predictions for the linear regression model, using (3.10.1) and (3.10.2).
parameters:
- X_hat: ndarray of shape (m,k), predictors for the model
- credibility_level: float, credibility level for predictions (between 0 and 1)
returns:
- estimates_forecasts: ndarray of shape (m, 3), posterior estimates for predictions

column 1: credibility interval lower bound; column 2: median;
column 3: credibility interval upper bound

� forecast_evaluation(y)
forecast evaluation criteria for the linear regression model.
parameters:
- y: ndarray of shape (m,), array of realised values for forecast evaluation
returns:
- none

Example (Python):

# imports
from alexandria.linear_regression import MaximumLikelihoodRegression
from alexandria.datasets import data_sets as ds

# load Taylor dataset, split as train/test
taylor_data = ds.load_taylor()
y_train, X_train = taylor_data[:198,0], taylor_data[:198,1:]
y_test, X_test = taylor_data[198:,0], taylor_data[198:,1:]

# create and train regression
mlr = MaximumLikelihoodRegression(endogenous=y_train, exogenous=X_train,
constant=True)
mlr.estimate()
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# get predictions on test sample, run forecast evaluation, display RMSE
estimates_forecasts = mlr.forecast(X_test, 0.95)
mlr.forecast_evaluation(y_test)
print('RMSE on test sample : '
+ str(round(mlr.forecast_evaluation_criteria['rmse'], 2)))

'RMSE on test sample: 3.21'

Example (Matlab):

% load Taylor dataset, split as train/test
taylor_data = ds.load_taylor();
y_train = taylor_data(1:198,1); X_train = taylor_data(1:198,2:end);
y_test = taylor_data(198:end,1); X_test = taylor_data(198:end,2:end);

% create and train regression
mlr = MaximumLikelihoodRegression(y_train, X_train, 'constant', true);
mlr.estimate();

% get predictions on test sample, run forecast evaluation, display RMSE
estimates_forecasts = mlr.forecast(X_test, 0.95);
mlr.forecast_evaluation(y_test);
disp(['RMSE on test sample: ' ...
num2str(round(mlr.forecast_evaluation_criteria.rmse, 2))]);

'RMSE on test sample: 3.21'
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7.2 Linear regression: SimpleBayesianRegression

A simple Bayesian regression, described in section 9.2.

Class:
alexandria.linear_regression.SimpleBayesianRegression(endogenous, exogenous, constant = True, trend
= False, quadratic_trend = False, b_exogenous = 0, V_exogenous = 1, b_constant = 0, V_constant = 1,
b_trend = 0, V_trend = 1, b_quadratic_trend = 0, V_quadratic_trend = 1, credibility_level = 0.95, verbose
= False)

Parameters:

parameter description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.3)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.3)
constant bool, default = True: if True, an intercept is included in the regression
trend bool, default = False: if True, a linear trend is included in the regression
quadratic_trend bool, default = False: if True, a quadratic trend is included in the regression
b_exogenous float or ndarray of shape (n_regressors,), default = 0: prior mean for regressors
V_exogenous float or ndarray of shape (n_regressors,), default = 1: prior variance for regressors
b_constant float, default = 0: prior mean for constant term
V_constant float, default = 1: prior variance for constant (positive)
b_trend float, default = 0: prior mean for trend
V_trend float, default = 1: prior variance for trend (positive)
b_quadratic_trend float, default = 0: prior mean for quadratic trend
V_quadratic_trend float, default = 1: prior variance for quadratic trend (positive)
credibility_level float, default = 0.95: credibility level (between 0 and 1)
verbose bool, default = False: if True, displays a progress bar
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Attributes:

attribute description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.1)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.1)
constant bool: if True, an intercept is included in the regression
trend bool: if True, a linear trend is included in the regression
quadratic_trend bool: if True, a quadratic trend is included in the regression
b_exogenous float or ndarray of shape (n_regressors,): prior mean for regressors
V_exogenous float or ndarray of shape (n_regressors,): prior variance for regressors
b_constant float: prior mean for constant term
V_constant float: prior variance for constant (positive)
b_trend float: prior mean for trend
V_trend float: prior variance for trend (positive)
b_quadratic_trend float: prior mean for quadratic trend
V_quadratic_trend float: prior variance for quadratic trend (positive)
b ndarray of shape (k,): prior mean, defined in (3.9.10)
V ndarray of shape (k,k): prior variance, defined in (3.9.10)
credibility_level float: credibility level (between 0 and 1)
verbose bool: if True, displays a progress bar
y ndarray of shape (n,): endogenous variable, defined in (3.9.3)
X ndarray of shape (n,k): exogenous variables, defined in (3.9.3)
n int: number of observations, defined in (3.9.1)
k int: dimension of beta, defined in (3.9.1)
sigma float: residual variance, defined in (3.9.1)
b_bar ndarray of shape (k,): posterior mean, defined in (3.9.14)
V_bar ndarray of shape (k,k): posterior variance, defined in (3.9.14)
estimates_beta ndarray of shape (k,4): posterior estimates for beta

column 1: interval lower bound; column 2: median;
column 3: interval upper bound; column 4: standard deviation

X_hat ndarray of shape (m,k): predictors for the model
m int: number of predicted observations, defined in (3.10.1)
estimates_forecasts ndarray of shape (m,3): posterior estimates for predictions

column 1: interval lower bound; column 2: median;
column 3: interval upper bound

estimates_fit ndarray of shape (n,): posterior estimates (median) for in sample-fit
estimates_residuals ndarray of shape (n,): posterior estimates (median) for residuals
insample_evaluation dict: in-sample fit evaluation (SSR, R2, adj-R2)
forecast_evaluation_criteria dict: out-of-sample forecast evaluation (RMSE, MAE, ...)
m_y float: log10 marginal likelihood

Methods:
� estimate()
trains the model, produces estimates for parameters β and σ

parameters:
- none
returns:
- none
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� fit_and_residuals()
estimates in-sample fit and regression residuals
parameters:
- none
returns:
- none

� forecast(X_hat, credibility_level)
predictions for the linear regression model, using (3.10.1) and (3.10.2)
parameters:
- X_hat: ndarray of shape (m,k), predictors for the model
- credibility_level: float, credibility level for predictions (between 0 and 1)
returns:
- estimates_forecasts: ndarray of shape (m, 3), posterior estimates for predictions

column 1: credibility interval lower bound; column 2: median;
column 3: credibility interval upper bound

� forecast_evaluation(y)
forecast evaluation criteria for the linear regression model.
parameters:
- y: ndarray of shape (m,), array of realised values for forecast evaluation
returns:
- none

� marginal_likelihood()
log10 marginal likelihood, defined in (3.10.20).
parameters:
- none
returns:
- m_y: float, log 10 marginal likelihood value.

� optimize_hyperparameters(type)
optimize V by maximizing the marginal likelihood
parameters:
- type: int, optimization type (1 or 2); 1 = optimize scalar v; 2 = optimize vector V
returns:
- none

Example (Python):

# imports
from alexandria.linear_regression import SimpleBayesianRegression
from alexandria.datasets import data_sets as ds
import numpy as np

# load Taylor dataset, split as train/test
taylor_data = ds.load_taylor()
y_train, X_train = taylor_data[:198,0], taylor_data[:198,1:]
y_test, X_test = taylor_data[198:,0], taylor_data[198:,1:]

# set prior mean and prior variance for the model
b = np.array([1.5, 0.5])
b_const = 1
V = np.array([0.01, 0.0025])
V_const = 0.01
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# create and train regression
sbr = SimpleBayesianRegression(endogenous=y_train, exogenous=X_train,
constant=True, b_exogenous=b, V_exogenous=V, b_constant=b_const, V_constant=V_const)
sbr.estimate()

# get predictions on test sample, run forecast evaluation, display log score
estimates_forecasts = sbr.forecast(X_test, 0.95)
sbr.forecast_evaluation(y_test)
print('log score on test sample : '
+ str(round(sbr.forecast_evaluation_criteria['log_score'], 2)))

'log score on test sample : 2.17'

Example (Matlab):

% load Taylor dataset, split as train/test
taylor_data = ds.load_taylor();
y_train = taylor_data(1:198,1); X_train = taylor_data(1:198,2:end);
y_test = taylor_data(198:end,1); X_test = taylor_data(198:end,2:end);

% set prior mean and prior variance for the model
b = [1.5, 0.5]';
b_const = 1;
V = [0.01, 0.0025]';
V_const = 0.01;

% create and train regression
sbr = SimpleBayesianRegression(y_train, X_train, 'constant', true, 'b_exogenous', b, ...
'V_exogenous', V, 'b_constant', b_const, 'V_constant', V_const);
sbr.estimate();

% get predictions on test sample, run forecast evaluation, display log score
estimates_forecasts = sbr.forecast(X_test, 0.95);
sbr.forecast_evaluation(y_test);
disp(['log score on test sample: ' ...
num2str(round(sbr.forecast_evaluation_criteria.log_score, 2))]);

'log score on test sample : 2.17'
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7.3 Linear regression: HierarchicalBayesianRegression

A hierarchical Bayesian regression, described in section 9.3.

Class:
alexandria.linear_regression.HierarchicalBayesianRegression(endogenous, exogenous, constant = True,
trend = False, quadratic_trend = False, b_exogenous = 0, V_exogenous = 1, b_constant = 0, V_constant
= 1, b_trend = 0, V_trend = 1, b_quadratic_trend = 0, V_quadratic_trend = 1, alpha = 1e-4, delta = 1e-4,
credibility_level = 0.95, verbose = False)

Parameters:

parameter description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.3)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.3)
constant bool, default = True: if True, an intercept is included in the regression
trend bool, default = False: if True, a linear trend is included in the regression
quadratic_trend bool, default = False: if True, a quadratic trend is included in the regression
b_exogenous float or ndarray of shape (n_regressors,), default = 0: prior mean for regressors
V_exogenous float or ndarray of shape (n_regressors,), default = 1: prior variance for regressors
b_constant float, default = 0: prior mean for constant term
V_constant float, default = 1: prior variance for constant (positive)
b_trend float, default = 0: prior mean for trend
V_trend float, default = 1: prior variance for trend (positive)
b_quadratic_trend float, default = 0: prior mean for quadratic trend
V_quadratic_trend float, default = 1: prior variance for quadratic trend (positive)
alpha float, default = 1e-4: prior shape, defined in (3.9.21)
delta float, default = 1e-4: prior scale, defined in (3.9.21)
credibility_level float, default = 0.95: credibility level (between 0 and 1)
verbose bool, default = False: if True, displays a progress bar
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Attributes:

attribute description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.1)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.1)
constant bool: if True, an intercept is included in the regression
trend bool: if True, a linear trend is included in the regression
quadratic_trend bool: if True, a quadratic trend is included in the regression
b_exogenous float or ndarray of shape (n_regressors,): prior mean for regressors
V_exogenous float or ndarray of shape (n_regressors,): prior variance for regressors
b_constant float: prior mean for constant term
V_constant float: prior variance for constant (positive)
b_trend float: prior mean for trend
V_trend float: prior variance for trend (positive)
b_quadratic_trend float: prior mean for quadratic trend
V_quadratic_trend float: prior variance for quadratic trend (positive)
b ndarray of shape (k,): prior mean, defined in (3.9.10)
V ndarray of shape (k,k): prior variance, defined in (3.9.10)
alpha float, default = 1e-4: prior shape, defined in (3.9.21)
delta float, default = 1e-4: prior scale, defined in (3.9.21)
credibility_level float: credibility level (between 0 and 1)
verbose bool: if True, displays a progress bar
y ndarray of shape (n,): endogenous variable, defined in (3.9.3)
X ndarray of shape (n,k): exogenous variables, defined in (3.9.3)
n int: number of observations, defined in (3.9.1)
k int: dimension of beta, defined in (3.9.1)
b_bar ndarray of shape (k,): posterior mean, defined in (3.9.14)
V_bar ndarray of shape (k,k): posterior variance, defined in (3.9.14)
alpha_bar float: posterior shape, defined in (3.9.24)
delta_bar float: posterior scale, defined in (3.9.24)
location ndarray of shape (k,): location for the student posterior of beta, defined in (3.9.28)
scale ndarray of shape (k,k): scale for the student posterior of beta, defined in (3.9.28)
df float: degrees of freedom for the student posterior of beta, defined in (3.9.28)
estimates_beta ndarray of shape (k,4): posterior estimates for beta

column 1: interval lower bound; column 2: median;
column 3: interval upper bound; column 4: standard deviation

estimates_sigma float: posterior estimate for sigma
X_hat ndarray of shape (m,k): predictors for the model
m int: number of predicted observations, defined in (3.10.1)
estimates_forecasts ndarray of shape (m,3): posterior estimates for predictions

column 1: interval lower bound; column 2: median;
column 3: interval upper bound

estimates_fit ndarray of shape (n,): posterior estimates (median) for in sample-fit
estimates_residuals ndarray of shape (n,): posterior estimates (median) for residuals
insample_evaluation dict: in-sample fit evaluation (SSR, R2, adj-R2)
forecast_evaluation_criteria dict: out-of-sample forecast evaluation (RMSE, MAE, ...)
m_y float: log10 marginal likelihood
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Methods:
� estimate()
trains the model, produces estimates for parameters β and σ

parameters:
- none
returns:
- none

� fit_and_residuals()
estimates in-sample fit and regression residuals
parameters:
- none
returns:
- none

� forecast(X_hat, credibility_level)
predictions for the linear regression model, using (3.10.1) and (3.10.2)
parameters:
- X_hat: ndarray of shape (m,k), predictors for the model
- credibility_level: float, credibility level for predictions (between 0 and 1)
returns:
- estimates_forecasts: ndarray of shape (m, 3), posterior estimates for predictions

column 1: credibility interval lower bound; column 2: median;
column 3: credibility interval upper bound

� forecast_evaluation(y)
forecast evaluation criteria for the linear regression model.
parameters:
- y: ndarray of shape (m,), array of realised values for forecast evaluation
returns:
- none

� marginal_likelihood()
log10 marginal likelihood, defined in (3.10.20).
parameters:
- none
returns:
- m_y: float, log 10 marginal likelihood value.

� optimize_hyperparameters(type)
optimize V and delta by maximizing the marginal likelihood
parameters:
- type: int, optimization type (1 or 2); 1 = optimize scalar v; 2 = optimize vector V
returns:
- none

Example (Python):

# imports
from alexandria.linear_regression import HierarchicalBayesianRegression
from alexandria.datasets import data_sets as ds
import numpy as np
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# load Taylor dataset, split as train/test
taylor_data = ds.load_taylor()
y_train, X_train = taylor_data[:198,0], taylor_data[:198,1:]
y_test, X_test = taylor_data[198:,0], taylor_data[198:,1:]

# set prior mean and prior variance for the model
b = np.array([1.5, 0.5])
b_const = 1
V = np.array([0.01, 0.0025])
V_const = 0.01

# create and train regression
hbr = HierarchicalBayesianRegression(endogenous=y_train, exogenous=X_train,
constant=True, b_exogenous=b, V_exogenous=V, b_constant=b_const, V_constant=V_const)
hbr.estimate()

# get predictions on test sample, run forecast evaluation, display log score
estimates_forecasts = hbr.forecast(X_test, 0.95)
hbr.forecast_evaluation(y_test)
print('log score on test sample : '
+ str(round(hbr.forecast_evaluation_criteria['log_score'], 2)))

'log score on test sample : 2.33'

Example (Matlab):

% load Taylor dataset, split as train/test
taylor_data = ds.load_taylor();
y_train = taylor_data(1:198,1); X_train = taylor_data(1:198,2:end);
y_test = taylor_data(198:end,1); X_test = taylor_data(198:end,2:end);

% set prior mean and prior variance for the model
b = [1.5, 0.5]';
b_const = 1;
V = [0.01, 0.0025]';
V_const = 0.01;

% create and train regression
hbr = HierarchicalBayesianRegression(y_train, X_train, 'constant', true, 'b_exogenous', b, ...
'V_exogenous', V, 'b_constant', b_const, 'V_constant', V_const);
hbr.estimate();

% get predictions on test sample, run forecast evaluation, display log score
estimates_forecasts = hbr.forecast(X_test, 0.95);
hbr.forecast_evaluation(y_test);
disp(['log score on test sample: ' ...
num2str(round(hbr.forecast_evaluation_criteria.log_score, 2))]);

'log score on test sample : 2.34'
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7.4 Linear regression: IndependentBayesianRegression

A independent Bayesian regression with Gibbs sampling, described in section 9.4.

Class:
alexandria.linear_regression.IndependentBayesianRegression(endogenous, exogenous, constant = True,
trend = False, quadratic_trend = False, b_exogenous = 0, V_exogenous = 1, b_constant = 0, V_constant
= 1, b_trend = 0, V_trend = 1, b_quadratic_trend = 0, V_quadratic_trend = 1, alpha = 1e-4, delta = 1e-4,
iterations = 2000, burn = 1000, credibility_level = 0.95, verbose = False)

Parameters:

parameter description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.3)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.3)
constant bool, default = True: if True, an intercept is included in the regression
trend bool, default = False: if True, a linear trend is included in the regression
quadratic_trend bool, default = False: if True, a quadratic trend is included in the regression
b_exogenous float or ndarray of shape (n_regressors,), default = 0: prior mean for regressors
V_exogenous float or ndarray of shape (n_regressors,), default = 1: prior variance for regressors
b_constant float, default = 0: prior mean for constant term
V_constant float, default = 1: prior variance for constant (positive)
b_trend float, default = 0: prior mean for trend
V_trend float, default = 1: prior variance for trend (positive)
b_quadratic_trend float, default = 0: prior mean for quadratic trend
V_quadratic_trend float, default = 1: prior variance for quadratic trend (positive)
alpha float, default = 1e-4: prior shape, defined in (3.9.21)
delta float, default = 1e-4: prior scale, defined in (3.9.21)
iterations int, default = 2000: post burn-in iterations for MCMC algorithm
burn int, default = 1000: burn-in iterations for MCMC algorithm
credibility_level float, default = 0.95: credibility level (between 0 and 1)
verbose bool, default = False: if True, displays a progress bar
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Attributes:

attribute description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.1)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.1)
constant bool: if True, an intercept is included in the regression
trend bool: if True, a linear trend is included in the regression
quadratic_trend bool: if True, a quadratic trend is included in the regression
b_exogenous float or ndarray of shape (n_regressors,): prior mean for regressors
V_exogenous float or ndarray of shape (n_regressors,): prior variance for regressors
b_constant float: prior mean for constant term
V_constant float: prior variance for constant (positive)
b_trend float: prior mean for trend
V_trend float: prior variance for trend (positive)
b_quadratic_trend float: prior mean for quadratic trend
V_quadratic_trend float: prior variance for quadratic trend (positive)
b ndarray of shape (k,): prior mean, defined in (3.9.10)
V ndarray of shape (k,k): prior variance, defined in (3.9.10)
alpha float, default = 1e-4: prior shape, defined in (3.9.21)
delta float, default = 1e-4: prior scale, defined in (3.9.21)
iterations int, default = 2000: post burn-in iterations for MCMC algorithm
burn int, default = 1000: burn-in iterations for MCMC algorithm
credibility_level float: credibility level (between 0 and 1)
verbose bool: if True, displays a progress bar
y ndarray of shape (n,): endogenous variable, defined in (3.9.3)
X ndarray of shape (n,k): exogenous variables, defined in (3.9.3)
n int: number of observations, defined in (3.9.1)
k int: dimension of beta, defined in (3.9.1)
alpha_bar float: posterior shape, defined in (3.9.24)
mcmc_beta matrix of size (k, iterations): storage of mcmc values for beta
mcmc_sigma vector of size (iterations,): storage of mcmc values for sigma
estimates_beta ndarray of shape (k,4): posterior estimates for beta

column 1: interval lower bound; column 2: median;
column 3: interval upper bound; column 4: standard deviation

estimates_sigma float: posterior estimate for sigma
X_hat ndarray of shape (m,k): predictors for the model
m int: number of predicted observations, defined in (3.10.1)
mcmc_forecasts matrix of size (m, iterations): storage of mcmc values for forecasts
estimates_forecasts ndarray of shape (m,3): posterior estimates for predictions

column 1: interval lower bound; column 2: median;
column 3: interval upper bound

estimates_fit ndarray of shape (n,): posterior estimates (median) for in sample-fit
estimates_residuals ndarray of shape (n,): posterior estimates (median) for residuals
insample_evaluation dict: in-sample fit evaluation (SSR, R2, adj-R2)
forecast_evaluation_criteria dict: out-of-sample forecast evaluation (RMSE, MAE, ...)
m_y float: log10 marginal likelihood
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Methods:
� estimate()
trains the model, produces estimates for parameters β and σ

parameters:
- none
returns:
- none

� fit_and_residuals()
estimates in-sample fit and regression residuals
parameters:
- none
returns:
- none

� forecast(X_hat, credibility_level)
predictions for the linear regression model, using (3.10.1) and (3.10.2)
parameters:
- X_hat: ndarray of shape (m,k), predictors for the model
- credibility_level: float, credibility level for predictions (between 0 and 1)
returns:
- estimates_forecasts: ndarray of shape (m, 3), posterior estimates for predictions

column 1: credibility interval lower bound; column 2: median;
column 3: credibility interval upper bound

� forecast_evaluation(y)
forecast evaluation criteria for the linear regression model.
parameters:
- y: ndarray of shape (m,), array of realised values for forecast evaluation
returns:
- none

� marginal_likelihood()
log10 marginal likelihood, defined in (3.10.20).
parameters:
- none
returns:
- m_y: float, log 10 marginal likelihood value.

Example (Python):

# imports
from alexandria.linear_regression import IndependentBayesianRegression
from alexandria.datasets import data_sets as ds
import numpy as np

# load Taylor dataset, split as train/test
taylor_data = ds.load_taylor()
y_train, X_train = taylor_data[:198,0], taylor_data[:198,1:]
y_test, X_test = taylor_data[198:,0], taylor_data[198:,1:]
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# set prior mean and prior variance for the model
b = np.array([1.5, 0.5])
b_const = 1
V = np.array([0.01, 0.0025])
V_const = 0.01

# create and train regression
ibr = IndependentBayesianRegression(endogenous=y_train, exogenous=X_train,
constant=True, b_exogenous=b, V_exogenous=V, b_constant=b_const, V_constant=V_const)
ibr.estimate()

# get predictions on test sample, run forecast evaluation, display log score
estimates_forecasts = ibr.forecast(X_test, 0.95)
ibr.forecast_evaluation(y_test)
print('log score on test sample : '
+ str(round(ibr.forecast_evaluation_criteria['log_score'], 2)))

'log score on test sample : 2.18'

Example (Matlab):

% load Taylor dataset, split as train/test
taylor_data = ds.load_taylor();
y_train = taylor_data(1:198,1); X_train = taylor_data(1:198,2:end);
y_test = taylor_data(198:end,1); X_test = taylor_data(198:end,2:end);

% set prior mean and prior variance for the model
b = [1.5, 0.5]';
b_const = 1;
V = [0.01, 0.0025]';
V_const = 0.01;

% create and train regression
ibr = IndependentBayesianRegression(y_train, X_train, 'constant', true, 'b_exogenous', b, ...
'V_exogenous', V, 'b_constant', b_const, 'V_constant', V_const);
ibr.estimate();

% get predictions on test sample, run forecast evaluation, display log score
estimates_forecasts = ibr.forecast(X_test, 0.95);
ibr.forecast_evaluation(y_test);
disp(['log score on test sample: ' ...
num2str(round(ibr.forecast_evaluation_criteria.log_score, 2))]);

'log score on test sample : 2.18'
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7.5 Linear regression: HeteroscedasticBayesianRegressionn

A Bayesian regression with heteroscedastic disturbances, described in section 9.5.

Class:

alexandria.linear_regression.HeteroscedasticBayesianRegression(endogenous, exogenous, heteroscedas-
tic = None, constant = True, trend = False, quadratic_trend = False, b_exogenous = 0, V_exogenous = 1,
b_constant = 0, V_constant = 1, b_trend = 0, V_trend = 1, b_quadratic_trend = 0, V_quadratic_trend = 1,
alpha = 1e-4, g = 0, Q = 100, tau = 0.001, delta = 1e-4, iterations = 2000, burn = 1000, thinning = False,
thinning_frequency = 10, credibility_level = 0.95, verbose = False)

Parameters:

parameter description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.3)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.3)
heteroscedastic ndarray of shape (n_obs,h), default = exogenous: heteroscedasticity variables, defined

in (3.9.37)
constant bool, default = True: if True, an intercept is included in the regression
trend bool, default = False: if True, a linear trend is included in the regression
quadratic_trend bool, default = False: if True, a quadratic trend is included in the regression
b_exogenous float or ndarray of shape (n_regressors,), default = 0: prior mean for regressors
V_exogenous float or ndarray of shape (n_regressors,), default = 1: prior variance for regressors
b_constant float, default = 0: prior mean for constant term
V_constant float, default = 1: prior variance for constant (positive)
b_trend float, default = 0: prior mean for trend
V_trend float, default = 1: prior variance for trend (positive)
b_quadratic_trend float, default = 0: prior mean for quadratic trend
V_quadratic_trend float, default = 1: prior variance for quadratic trend (positive)
alpha float, default = 1e-4: prior shape, defined in (3.9.21)
delta float, default = 1e-4: prior scale, defined in (3.9.21)
g float or ndarray of shape (h,), default = 0: prior mean, defined in (3.9.43)
Q float or ndarray of shape (h,), default = 100: prior variance, defined in (3.9.43)
tau float, default = 0.001: variance of the random walk shock, defined in (3.9.50)
iterations int, default = 2000: post burn-in iterations for MCMC algorithm
burn int, default = 1000: burn-in iterations for MCMC algorithm
thinning bool, default = False: if True, thinning is applied to posterior draws from MCMC algo-

rithm
thinning_frequency int, default = 10: if thinning is True, retains only one out of so many draws from MCMC

algorithm
credibility_level float, default = 0.95: credibility level (between 0 and 1)
verbose bool, default = False: if True, displays a progress bar

Attributes:
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attribute description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.1)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.1)
heteroscedastic ndarray of shape (n_obs,h), default = exogenous: heteroscedasticity variables, de-

fined in (3.9.37)
constant bool: if True, an intercept is included in the regression
trend bool: if True, a linear trend is included in the regression
quadratic_trend bool: if True, a quadratic trend is included in the regression
b_exogenous float or ndarray of shape (n_regressors,): prior mean for regressors
V_exogenous float or ndarray of shape (n_regressors,): prior variance for regressors
b_constant float: prior mean for constant term
V_constant float: prior variance for constant (positive)
b_trend float: prior mean for trend
V_trend float: prior variance for trend (positive)
b_quadratic_trend float: prior mean for quadratic trend
V_quadratic_trend float: prior variance for quadratic trend (positive)
b ndarray of shape (k,): prior mean, defined in (3.9.10)
V ndarray of shape (k,k): prior variance, defined in (3.9.10)
alpha float, default = 1e-4: prior shape, defined in (3.9.21)
delta float, default = 1e-4: prior scale, defined in (3.9.21)
g ndarray of shape (h,): prior mean, defined in (3.9.43)
Q ndarray of shape (h,h): prior variance, defined in (3.9.43)
tau float: variance of the random walk shock, defined in (3.9.50)
iterations int: post burn-in iterations for MCMC algorithm
burn int: burn-in iterations for MCMC algorithm
thinning bool: if True, thinning is applied to posterior draws from MCMC algorithm
thinning_frequency int: if thinning is True, retains only one out of so many draws from MCMC algorithm
credibility_level float: credibility level (between 0 and 1)
verbose bool: if True, displays a progress bar
y ndarray of shape (n,): endogenous variable, defined in (3.9.3)
X ndarray of shape (n,k): exogenous variables, defined in (3.9.3)
Z ndarray of shape (n,h): heteroscedasticity variables, defined in (3.9.39)
n int: number of observations, defined in (3.9.1)
k int: dimension of beta, defined in (3.9.1)
h int: dimension of gamma, defined in (3.9.37)
alpha_bar float: posterior shape, defined in (3.9.24)
mcmc_beta matrix of size (k, iterations): storage of mcmc values for beta
mcmc_sigma vector of size (iterations,): storage of mcmc values for sigma
mcmc_gamma ndarray of shape (h,iterations): storage of mcmc values for gamma
estimates_beta ndarray of shape (k,4): posterior estimates for beta

column 1: interval lower bound; column 2: median;
column 3: interval upper bound; column 4: standard deviation

estimates_sigma float: posterior estimate for sigma
estimates_gamma ndarray of shape (h,3): posterior estimates for gamma

column 1: interval lower bound; column 2: median;
column 3: interval upper bound

X_hat ndarray of shape (m,k): predictors for the model
Z_hat ndarray of shape (m,h): heteroscedasticity predictors for the model
m int: number of predicted observations, defined in (3.10.1)
mcmc_forecasts matrix of size (m, iterations): storage of mcmc values for forecasts
estimates_forecasts ndarray of shape (m,3): posterior estimates for predictions

column 1: interval lower bound; column 2: median;
column 3: interval upper bound

estimates_fit ndarray of shape (n,): posterior estimates (median) for in sample-fit
estimates_residuals ndarray of shape (n,): posterior estimates (median) for residuals
insample_evaluation dict: in-sample fit evaluation (SSR, R2, adj-R2)
forecast_evaluation_criteria dict: out-of-sample forecast evaluation (RMSE, MAE, ...)
m_y float: log10 marginal likelihood
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Methods:
� estimate()
trains the model, produces estimates for parameters β , σ and γ

parameters:
- none
returns:
- none

� fit_and_residuals()
estimates in-sample fit and regression residuals
parameters:
- none
returns:
- none

� forecast(X_hat, credibility_level)
predictions for the linear regression model, using (3.10.1) and (3.10.2)
parameters:
- X_hat: ndarray of shape (m,k), predictors for the model
- credibility_level: float, credibility level for predictions (between 0 and 1)
returns:
- estimates_forecasts: ndarray of shape (m, 3), posterior estimates for predictions

column 1: credibility interval lower bound; column 2: median;
column 3: credibility interval upper bound

� forecast_evaluation(y)
forecast evaluation criteria for the linear regression model.
parameters:
- y: ndarray of shape (m,), array of realised values for forecast evaluation
returns:
- none

� marginal_likelihood()
log10 marginal likelihood, defined in (3.10.20).
parameters:
- none
returns:
- m_y: float, log 10 marginal likelihood value.

Example (Python):

# imports
from alexandria.linear_regression import HeteroscedasticBayesianRegression
from alexandria.datasets import data_sets as ds
import numpy as np

# load Taylor dataset, split as train/test
taylor_data = ds.load_taylor()
y_train, X_train = taylor_data[:198,0], taylor_data[:198,1:]
y_test, X_test = taylor_data[198:,0], taylor_data[198:,1:]
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# set prior mean and prior variance for the model
b = np.array([1.5, 0.5])
b_const = 1
V = np.array([0.01, 0.0025])
V_const = 0.01

# create and train regression
hbr = HeteroscedasticBayesianRegression(endogenous=y_train, exogenous=X_train,
constant=True, b_exogenous=b, V_exogenous=V, b_constant=b_const, V_constant=V_const)
hbr.estimate()

# get predictions on test sample, run forecast evaluation, display log score
estimates_forecasts = hbr.forecast(X_test, 0.95)
hbr.forecast_evaluation(y_test)
print('log score on test sample : '
+ str(round(hbr.forecast_evaluation_criteria['log_score'], 2)))

'log score on test sample : 2.14'

Example (Matlab):

% load Taylor dataset, split as train/test
taylor_data = ds.load_taylor();
y_train = taylor_data(1:198,1); X_train = taylor_data(1:198,2:end);
y_test = taylor_data(198:end,1); X_test = taylor_data(198:end,2:end);

% set prior mean and prior variance for the model
b = [1.5, 0.5]';
b_const = 1;
V = [0.01, 0.0025]';
V_const = 0.01;

% create and train regression
hbr = HeteroscedasticBayesianRegression(y_train, X_train, 'constant', true, 'b_exogenous', b, ...
'V_exogenous', V, 'b_constant', b_const, 'V_constant', V_const);
hbr.estimate();

% get predictions on test sample, run forecast evaluation, display log score
estimates_forecasts = hbr.forecast(X_test, 0.95);
hbr.forecast_evaluation(y_test);
disp(['log score on test sample: ' ...
num2str(round(hbr.forecast_evaluation_criteria.log_score, 2))]);

'log score on test sample : 2.14'
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7.6 Linear regression: AutocorrelatedBayesianRegression

A Bayesian regression with autocorrelated disturbances, described in section 9.6.

Class:
alexandria.linear_regression.AutocorrelatedBayesianRegression(endogenous, exogenous, q = 1, constant
= True, trend = False, quadratic_trend = False, b_exogenous = 0, V_exogenous = 1, b_constant = 0,
V_constant = 1, b_trend = 0, V_trend = 1, b_quadratic_trend = 0, V_quadratic_trend = 1, alpha = 1e-4,
delta = 1e-4, p = 0, H = 100, iterations = 2000, burn = 1000, credibility_level = 0.95, verbose = False)

Parameters:

parameter description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.3)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.3)
q int, default = 1: order of autocorrelation (number of residual lags)
constant bool, default = True: if True, an intercept is included in the regression
trend bool, default = False: if True, a linear trend is included in the regression
quadratic_trend bool, default = False: if True, a quadratic trend is included in the regression
b_exogenous float or ndarray of shape (n_regressors,), default = 0: prior mean for regressors
V_exogenous float or ndarray of shape (n_regressors,), default = 1: prior variance for regressors
b_constant float, default = 0: prior mean for constant term
V_constant float, default = 1: prior variance for constant (positive)
b_trend float, default = 0: prior mean for trend
V_trend float, default = 1: prior variance for trend (positive)
b_quadratic_trend float, default = 0: prior mean for quadratic trend
V_quadratic_trend float, default = 1: prior variance for quadratic trend (positive)
alpha float, default = 1e-4: prior shape, defined in (3.9.21)
delta float, default = 1e-4: prior scale, defined in (3.9.21)
p float or ndarray of shape (q,), default = 0: prior mean, defined in (3.9.62)
H float or ndarray of shape (q,), default = 100: prior variance, defined in (3.9.62)
iterations int, default = 2000: post burn-in iterations for MCMC algorithm
burn int, default = 1000: burn-in iterations for MCMC algorithm
credibility_level float, default = 0.95: credibility level (between 0 and 1)
verbose bool, default = False: if True, displays a progress bar
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Attributes:

attribute description

endogenous ndarray of shape (n_obs,): endogenous variable, defined in (3.9.1)
exogenous ndarray of shape (n_obs,n_regressors): exogenous variables, defined in (3.9.1)
q int: order of autocorrelation (number of residual lags)
constant bool: if True, an intercept is included in the regression
trend bool: if True, a linear trend is included in the regression
quadratic_trend bool: if True, a quadratic trend is included in the regression
b_exogenous ndarray of shape (n_regressors,): prior mean for regressors
V_exogenous ndarray of shape (n_regressors,): prior variance for regressors
b_constant float: prior mean for constant term
V_constant float: prior variance for constant (positive)
b_trend float: prior mean for trend
V_trend float: prior variance for trend (positive)
b_quadratic_trend float: prior mean for quadratic trend
V_quadratic_trend float: prior variance for quadratic trend (positive)
b ndarray of shape (k,): prior mean, defined in (3.9.10)
V ndarray of shape (k,k): prior variance, defined in (3.9.10)
alpha float: prior shape, defined in (3.9.21)
delta float: prior scale, defined in (3.9.21)
p ndarray of shape (q,): prior mean, defined in (3.9.62)
H ndarray of shape (q,q): prior variance, defined in (3.9.62)
iterations int: post burn-in iterations for MCMC algorithm
burn int: burn-in iterations for MCMC algorithm
credibility_level float: credibility level (between 0 and 1)
verbose bool: if True, displays a progress bar
y ndarray of shape (n,): endogenous variable, defined in (3.9.3)
X ndarray of shape (n,k): exogenous variables, defined in (3.9.3)
T int: number of observations, defined in (3.9.52)
k int: dimension of beta, defined in (3.9.1)
alpha_bar float: posterior shape, defined in (3.9.24)
mcmc_beta matrix of size (k, iterations): storage of mcmc values for beta
mcmc_sigma vector of size (iterations,): storage of mcmc values for sigma
mcmc_phi ndarray of shape (q,iterations): storage of mcmc values for phi
estimates_beta ndarray of shape (k,4): posterior estimates for beta

column 1: interval lower bound; column 2: median;
column 3: interval upper bound; column 4: standard deviation

estimates_sigma float: posterior estimate for sigma
estimates_phi ndarray of shape (q,3): posterior estimates for phi

column 1: interval lower bound; column 2: median;
column 3: interval upper bound

X_hat ndarray of shape (m,k): predictors for the model
m int: number of predicted observations, defined in (3.10.1)
mcmc_forecasts matrix of size (m, iterations): storage of mcmc values for forecasts
estimates_forecasts ndarray of shape (m,3): posterior estimates for predictions

column 1: interval lower bound; column 2: median;
column 3: interval upper bound

estimates_fit ndarray of shape (n,): posterior estimates (median) for in sample-fit
estimates_residuals ndarray of shape (n,): posterior estimates (median) for residuals
insample_evaluation dict: in-sample fit evaluation (SSR, R2, adj-R2)
forecast_evaluation_criteria dict: out-of-sample forecast evaluation (RMSE, MAE, ...)
m_y float: log10 marginal likelihood
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Methods:
� estimate()
trains the model, produces estimates for parameters β , σ and γ

parameters:
- none
returns:
- none

� fit_and_residuals()
estimates in-sample fit and regression residuals
parameters:
- none
returns:
- none

� forecast(X_hat, credibility_level)
predictions for the linear regression model, using (3.10.1) and (3.10.2)
parameters:
- X_hat: ndarray of shape (m,k), predictors for the model
- credibility_level: float, credibility level for predictions (between 0 and 1)
returns:
- estimates_forecasts: ndarray of shape (m, 3), posterior estimates for predictions

column 1: credibility interval lower bound; column 2: median;
column 3: credibility interval upper bound

� forecast_evaluation(y)
forecast evaluation criteria for the linear regression model.
parameters:
- y: ndarray of shape (m,), array of realised values for forecast evaluation
returns:
- none

� marginal_likelihood()
log10 marginal likelihood, defined in (3.10.20).
parameters:
- none
returns:
- m_y: float, log 10 marginal likelihood value.

Example (Python):

# imports
from alexandria.linear_regression import AutocorrelatedBayesianRegression
from alexandria.datasets import data_sets as ds
import numpy as np

# load Taylor dataset, split as train/test
taylor_data = ds.load_taylor()
y_train, X_train = taylor_data[:198,0], taylor_data[:198,1:]
y_test, X_test = taylor_data[198:,0], taylor_data[198:,1:]
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# set prior mean and prior variance for the model
b = np.array([1.5, 0.5])
b_const = 1
V = np.array([0.01, 0.0025])
V_const = 0.01

# create and train regression
abr = AutocorrelatedBayesianRegression(endogenous=y_train, exogenous=X_train,
constant=True, b_exogenous=b, V_exogenous=V, b_constant=b_const, V_constant=V_const)
abr.estimate()

# get predictions on test sample, run forecast evaluation, display log score
estimates_forecasts = abr.forecast(X_test, 0.95)
abr.forecast_evaluation(y_test)
print('log score on test sample : '
+ str(round(abr.forecast_evaluation_criteria['log_score'], 2)))

'log score on test sample : 2.12'

Example (Matlab):

% load Taylor dataset, split as train/test
taylor_data = ds.load_taylor();
y_train = taylor_data(1:198,1); X_train = taylor_data(1:198,2:end);
y_test = taylor_data(198:end,1); X_test = taylor_data(198:end,2:end);

% set prior mean and prior variance for the model
b = [1.5, 0.5]';
b_const = 1;
V = [0.01, 0.0025]';
V_const = 0.01;

% create and train regression
abr = AutocorrelatedBayesianRegression(y_train, X_train, 'constant', true, 'b_exogenous', b, ...
'V_exogenous', V, 'b_constant', b_const, 'V_constant', V_const);
abr.estimate();

% get predictions on test sample, run forecast evaluation, display log score
estimates_forecasts = abr.forecast(X_test, 0.95);
abr.forecast_evaluation(y_test);
disp(['log score on test sample: ' ...
num2str(round(abr.forecast_evaluation_criteria.log_score, 2))]);

'log score on test sample : 2.12'



CHAPTER 8

Alexandria datasets

Alexandria comes with a few pre-built datasets that can be loaded directly into the working space with-
out external files. These are mostly toy datasets proposed for pedagogical purposes, but they constitute
interesting economic data sources on their own.

8.1 The Taylor rule dataset

Description:
A dataset for the estimation of a Taylor rule for the Unite States.

Characteristics:

observations 264
frequency quarterly
start date 1955q1
end date 2020q4
variables 3
variable description ffrate: federal funds rate

inf: year-to-year inflation
gap: output gap, as percentage deviation from potential output

This is the dataset used in sections 9.8 and 10.4 of the textbook. It can be called with the following
functions:

Example (Python):

# imports: required to use the load functions
from alexandria.datasets import data_sets as ds

# load Taylor dataset as raw numpy array, with numeric data only
taylor_data = ds.load_taylor()

# or load Taylor dataset as pandas dataframe, with dates and variable names
taylor_data = ds.load_taylor_table()

Example (Matlab):

% load Taylor dataset as regular matrix, with numeric data only
taylor_data = ds.load_taylor();

% load Taylor dataset as Matlab table, with dates and variable names
taylor_data = ds.load_taylor_table();

71
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